Chứng minh |x+y| < = |x| + |y|
1. Chứng tỏ rằng: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
2. Tìm các số nguyên x, y, z, t sao cho:
\(\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|=2011\)
Trả lời (1)
-
a)
TH1. nếu \(\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left|x\right|\ge\left|x+0\right|=\left|x\right|\\\left|y\right|\ge\left|0+y\right|=\left|y\right|\end{matrix}\right.\) hiển nhiên đúng
TH2.với x, y khác 0
x.y>0 nghĩa là x, y cùng dấu
\(\left|x+y\right|=\left|-x-y\right|=\left|x\right|+\left|y\right|\)
x.y<0 nghĩa là x, y trái dấu
\(\left|x+y\right|=\left|\left|x\right|-\left|y\right|\right|\)
Nếu \(\left|x\right|\ge\left|y\right|\Rightarrow\left|\left|x\right|-\left|y\right|\right|=\left|x\right|-\left|y\right|\)(1)
Nếu \(\left|x\right|\le\left|y\right|\Rightarrow\left|\left|x\right|-\left|y\right|\right|=\left|y\right|-\left|x\right|\)(2)
hiển nhiển \(\left|x\right|+\left|y\right|\) luôn lơn hơn (1) và (2)
TH1 và TH2 => dpcm
b) x,y,z,t có vai trò như nhau đối VT =>
không mất tính tổng quát g/s: \(\left|x\right|\ge\left|y\right|\ge\left|z\right|\ge\left|t\right|\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-y\right|=\left|x\right|-\left|y\right|\\\left|y-z\right|=\left|y\right|-\left|z\right|\\\left|z-t\right|=\left|z\right|-\left|t\right|\\\left|t-x\right|=\left|x\right|-\left|t\right|\end{matrix}\right.\)
Cộng lại
VT =\(2\left(\left|x\right|-\left|t\right|\right)\) vậy VT luôn là một số chẵn VP là số lẻ => vô nghiệm
bởi Ngọc Phương Linh 08/05/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời
-
Lập phương trình chính tắc của hypebol (H), biết (H) đi qua hai điểm M(-1 ; 0) và \(N(2;2\sqrt 3 )\)
25/11/2022 | 1 Trả lời