Chứng minh x+căn(x^2-x+1) > 0 với mọi x thuộc R
Chứng minh: x+\(\sqrt{x^2-x+1}\) > 0 , với mọi x \(\in R\)
Chứng minh bằng nhiều cách nhất có thể??
Trả lời (1)
-
Ta có : \(x+\sqrt{x^2-x+1}=x+\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\)
Đến đây ta xét hai trường hợp :
1. Nếu \(x\ge0\) , dễ thấy đpcm vì \(\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\ge\frac{\sqrt{3}}{2}>0\)
2. Nếu x < 0 , giả sử \(x=-a\) (\(a\in R,a>0\))
Khi đó ta có : \(x+\sqrt{x^2-x+1}=-a+\sqrt{a^2+a+1}\)
Ta sẽ chứng minh \(\sqrt{a^2+a+1}>a\)
Điều này tương đương với \(a^2+a+1>a^2\Leftrightarrow a+1>0\)(luôn đúng)
Vậy ta có đpcm.
bởi Trà My Nguyễn Hoàng 07/11/2018Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời
-
Lập phương trình chính tắc của hypebol (H), biết (H) đi qua hai điểm M(-1 ; 0) và \(N(2;2\sqrt 3 )\)
25/11/2022 | 1 Trả lời