YOMEDIA
NONE

Chứng minh pt x^2-(m-1)x+2m-7=0 luôn có 2 nghiệm phân biệt

1. Chứng minh rằng: phương trình \(x^2-\left(m-1\right)x+2m-7=0\) luôn có 2 nghiệm phân biệt.

Tìm GTNN của \(T=\dfrac{1}{\left(x_1-1\right)^{2018}}+\dfrac{1}{\left(x_2-1\right)^{2018}}\) với \(x_1,x_2\) là 2 nghiệm của phương trình.

2. Giải phương trình \(\left(x+1\right)\sqrt{2x^2-1}=\left(x-1\right)\left(2x-1\right)\)

3. Giải hệ phương trình \(\left\{{}\begin{matrix}x\left(x^2+\left(y-z\right)^2\right)=2\\y\left(y^2+\left(z-x\right)^2\right)=16\\z\left(z^2+\left(x-y\right)^2\right)=30\end{matrix}\right.\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Câu 1 :

    Ta có :

    \(\Delta=\left(m-1\right)^2-4.\left(2m-7\right)\)

    \(=m^2-2m+1-8m+28\)

    \(=m^2-10m+27>0\)

    Do đó pt luôn có 2 nghiệm phân biệt

      bởi Nguyễn Giang Linh 22/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON