Chứng minh ab+bc+ca < = 0 biết a+b+c=0
A,Cho x,y,z dương .
Chứng minh rằng : 
\(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{3}{4}\)
B, Cho a,b,c thỏa mãn : a+b+c = 0 . Chứng minh rằng : ab+ bc + ca \(\le\) 0
Trả lời (1)
-
a) Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) (1)
\(\frac{1}{y}+\frac{1}{z}\ge\frac{4}{y+z}\) (2)
Cộng vế vs vế (1);(2) ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\ge\frac{4}{x+y}+\frac{4}{y+z}\)
Mà: \(\frac{4}{x+y}+\frac{4}{y+z}=4\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\ge4\left(\frac{4}{x+2y+z}\right)=\frac{16}{x+2y+z}\)
=> \(\frac{16}{x+2y+z}\le\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\)
=> \(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\)
=> \(\frac{y}{x+2y+z}\le\frac{y}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\) (3)
Tương tự ta cũng có:
\(\frac{x}{2x+y+z}\le\frac{x}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\) (4)
\(\frac{z}{x+y+2z}\le\frac{z}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\) (5)
Từ (3);(4);(5) suy ra:
\(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\le\frac{1}{16}\left(2+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+2+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}+2\right)\)
Vì: \(x,y,z>0\) nên áp dụng bđt cô-si ta có:
\(\frac{x}{y}+\frac{y}{x}\ge2;\frac{y}{z}+\frac{z}{y}\ge2;\frac{x}{z}+\frac{z}{x}\ge2\)
Do đó:
\(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\le\frac{1}{16}\left(6+2+2+2\right)=\frac{1}{16}\cdot12=\frac{3}{4}\)
b)
Vì: \(ab+bc+ca\le\\ a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=-2\left(ab+bc+ca\right)\)
=> \(3\left(ab+bc+ca\right)\le0\)
=> \(ab+bc+ca\le0\)
bởi Trần Thư
26/04/2019
Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời



