Chứng minh ab+bc+ca < = 0 biết a+b+c=0

bởi Lê Bảo An 26/04/2019

A,Cho x,y,z dương .

Chứng minh rằng : \(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{3}{4}\)

B, Cho a,b,c thỏa mãn : a+b+c = 0 . Chứng minh rằng : ab+ bc + ca \(\le\) 0

Câu trả lời (1)

  • a) Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) (1)

    \(\frac{1}{y}+\frac{1}{z}\ge\frac{4}{y+z}\) (2)

    Cộng vế vs vế (1);(2) ta có:

    \(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\ge\frac{4}{x+y}+\frac{4}{y+z}\)

    Mà: \(\frac{4}{x+y}+\frac{4}{y+z}=4\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\ge4\left(\frac{4}{x+2y+z}\right)=\frac{16}{x+2y+z}\)

    => \(\frac{16}{x+2y+z}\le\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\)

    => \(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\)

    => \(\frac{y}{x+2y+z}\le\frac{y}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\) (3)

    Tương tự ta cũng có:

    \(\frac{x}{2x+y+z}\le\frac{x}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\) (4)

    \(\frac{z}{x+y+2z}\le\frac{z}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\) (5)

    Từ (3);(4);(5) suy ra:

    \(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\le\frac{1}{16}\left(2+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+2+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}+2\right)\)

    Vì: \(x,y,z>0\) nên áp dụng bđt cô-si ta có:

    \(\frac{x}{y}+\frac{y}{x}\ge2;\frac{y}{z}+\frac{z}{y}\ge2;\frac{x}{z}+\frac{z}{x}\ge2\)

    Do đó:

    \(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\le\frac{1}{16}\left(6+2+2+2\right)=\frac{1}{16}\cdot12=\frac{3}{4}\)

    b)

    Vì: \(ab+bc+ca\le\\ a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=-2\left(ab+bc+ca\right)\)

    => \(3\left(ab+bc+ca\right)\le0\)

    => \(ab+bc+ca\le0\)

    bởi Trần Thư 26/04/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Mời gia nhập Biệt đội Ninja247

Gửi câu trả lời Hủy

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

Các câu hỏi có liên quan