YOMEDIA
NONE

Cho số \(m > 0\). Chứng minh rằng hypebol \((H)\) có các tiêu điểm \({F_1}( - m ; - m), {F_2}(m ; m)\) và giá trị tuyệt đối của hiệu các khoảng cách từ mỗi điểm trên \((H)\) tới các tiêu điểm là \(2m,\) có phương trình \(xy = \dfrac{{{m^2}}}{2}\).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Xét điểm tùy ý \(M(x ; y)  \in (H)\). Ta có

    \(\begin{array}{l}M \in (H)   \Leftrightarrow   |M{F_1} - M{F_2}| = 2m\\ \Leftrightarrow    \left| {\sqrt {{{(x + m)}^2} + {{(y + m)}^2}}  - \sqrt {{{(x - m)}^2} + {{(y - m)}^2}} } \right| = 2m\\ \Leftrightarrow     {(x + m)^2} + {(y + m)^2}  + {(x - m)^2} + {(y - m)^2}\\ - 2\sqrt {{{(x + m)}^2} + {{(y + m)}^2}} .\sqrt {{{(x - m)}^2} + {{(y - m)}^2}}     = 4{m^2} \\ \Leftrightarrow    {x^2} + {y^2} = \sqrt {{x^2} + {y^2} + 2{m^2} + (2mx + 2my)} \\.\sqrt {{x^2} + {y^2} + 2{m^2} - (2mx + 2my)} \\ \Leftrightarrow    {\left( {{x^2} + {y^2}} \right)^2} = {\left( {{x^2} + {y^2} + 2{m^2}} \right)^2} - {(2mx + 2my)^2}\\ \Leftrightarrow   xy =  \dfrac{{{m^2}}}{2}.\end{array}\)

    Chú ý rằng: Với \(m = \sqrt 2 \) ta có hypebol \(y =  \dfrac{1}{x}\).

      bởi Lê Trung Phuong 23/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON