YOMEDIA
NONE

Cho hai điểm \(A(1;2),B( - 3;1)\), đường tròn (C) có tâm nằm trên trục Oy và đi qua hai điểm A, B có bán kính bằng câu?

A. \(\sqrt {17} \)

B. \(\frac{{\sqrt {85} }}{2}\)

C. \(\frac{{85}}{4}\)       

D. \(17\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Đường tròn \(\left( C \right)\) có tâm nằm trên trục Oy\( \Rightarrow I\left( {0;\,\,b} \right)\) là tâm của đường tròn.

    \( \Rightarrow \left( C \right)\) có phương trình dạng: \({x^2} + {\left( {y - b} \right)^2} = c\)

    Vì \(A,B \in \left( C \right)\) ta có hệ: \(\left\{ \begin{array}{l}1 + {\left( {2 - b} \right)^2} = c\\9 + {\left( {1 - b} \right)^2} = c\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}1 + {\left( {2 - b} \right)^2} = c\\9 + {\left( {1 - b} \right)^2} = 1 + {\left( {2 - b} \right)^2}\end{array} \right.\)

    \(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}1 + {\left( {2 - b} \right)^2} = c\\\left( {1 - b - 2 + b} \right)\left( {1 - b + 2 - b} \right) + 8 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}1 + {\left( {2 - b} \right)^2} = c\\ - 3 + 2b + 8 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}c = \frac{{85}}{4}\\b =  - \frac{5}{2}\end{array} \right.\\ \Rightarrow R = \sqrt c  = \frac{{\sqrt {85} }}{2}.\end{array}\)  

    Chọn B.

      bởi thanh hằng 16/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON