YOMEDIA
NONE

Cho đường tròn \((C)\) có tâm \(O\) bán kính \(R\) và đường thẳng \(\Delta \) không cắt \((C)\). Chứng minh rằng tập hợp tâm các đường tròn tiếp xúc với \(\Delta \) và tiếp xúc ngoài với \((C)\) nằm trên một parabol. Tìm tiêu điểm và đường chuẩn của parabol đó.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  •  Kẻ \(OH\) vuông góc với \(\Delta \) và kéo dài \(OH\) (về phía \(H\)) một đoạn \(HK=R.\)

    Dựng đường thẳng \(\Delta '\) đi qua \(K\) và song song với \(\Delta \). Khi đó \(\Delta '\) cố định và không đi qua \(O\).

    Xét đường tròn \((C’)\) tâm \(I\) tiếp xúc ngoài với \((C)\) tại \(T\) và tiếp xúc với \(\Delta \) tại \(M\). Gọi \(N\) là giao điểm của đường thẳng \(IM\) và \(\Delta '\).

    Ta có: \(IO = OT + TI \)

    \(= R + IM = IN = d(I;\Delta ')\).

    Vậy \(I\) nằm trên paprbol nhận \(O\) làm tiêu điểm và \(\Delta '\) làm đường chuẩn.

      bởi thu trang 23/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON