YOMEDIA
NONE

Cho biết tổng các nghiệm nguyên của hệ bất phương trình sau \(\left\{ \begin{array}{l}{x^2} - 4 \le 0\\{x^2} - 6x + 5 > 0\end{array} \right.\)bằng

A.   2.                                     B.   3.

C.   –3.                                   D.   6.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có: \({x^2} - 4 \le 0 \Leftrightarrow  - 2 \le x \le 2\)

    Do đó \({S_1} = \left[ { - 2;2} \right]\)

    \({x^2} - 6x + 5 > 0\) \( \Leftrightarrow \left[ \begin{array}{l}x > 5\\x < 1\end{array} \right.\)

    Do đó \({S_2} = \left( { - \infty ;1} \right) \cup \left( {5; + \infty } \right)\)

    Vậy \(S = {S_1} \cap {S_2} = \left[ { - 2;1} \right)\).

    Mà \(x\) nguyên nên \(x \in \left\{ { - 2; - 1;0} \right\}\).

    Tổng các nghiệm nguyên đó là: \( - 2 + \left( { - 1} \right) + 0 =  - 3\)

    Chọn C

    Chú ý:

    Do đề bài hỏi tổng các nghiệm nguyên nên các em cộng các nghiệm lại, tránh chọn nhầm đáp án B là 3 nghiệm là sai.

      bởi Suong dem 17/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON