YOMEDIA
NONE

Cho 3 điểm là \(A\left( { - 6;3} \right)\), \(B\left( {0; - 1} \right)\), \(C\left( {3;2} \right)\). \(M(a;b)\)là điểm nằm trên đường thẳng \(d :2x - y + 3 = 0\) sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right|\) nhỏ nhất. Đẳng thức nào sau đây đúng?

A. \(5(a + b) = 28\)

B. \(5(a + b) =  - 28\)

C. \(5(a + b) = 2\)

D. \(5(a + b) =  - 2\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Gọi G là trọng tâm tam giác ABC \( \Rightarrow G\left( { - 1;\frac{4}{3}} \right)\)

    \( \Rightarrow \left| {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC} } \right| = \left| {3\overrightarrow {MG} } \right| \)\(= 3MG\)

    Để \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC} } \right|\) nhỏ nhất \( \Leftrightarrow MG\) nhỏ nhất \( \Leftrightarrow \) M là hình chiếu của G trên d

    Gọi \(d'\) là đường thẳng qua G vuông góc với d \( \Rightarrow d \cap d' = \left\{ M \right\}\)

    d nhận \(\overrightarrow n  = \left( {2; - 1} \right)\) là VTPT \( \Rightarrow \overrightarrow {n'}  = \left( {1;2} \right)\) là VTPT của \(d'\)

    \( \Rightarrow \) Phương trình \(d':\left( {x + 1} \right) + 2\left( {y - \frac{4}{3}} \right) = 0\) \( \Leftrightarrow x + 2y - \frac{5}{3} = 0\)

    Tọa độ điểm M là nghiệm của hệ : \(\left\{ \begin{array}{l}2x - y + 3 = 0\\x + 2y - \frac{5}{3} = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x =  - \frac{{13}}{{15}} = a\\y = \frac{{19}}{{15}} = b\end{array} \right.\)

    \( \Rightarrow 5\left( {a + b} \right) = 5\left( { - \frac{{13}}{{15}} + \frac{{19}}{{15}}} \right) = 2\) 

    Chọn C.

      bởi thúy ngọc 16/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON