YOMEDIA
NONE

Bài 1.52 trang 45 sách bài tập Hình học 10

Bài 1.52 (SBT trang 45)

Cho lục giác đều ABCDEF và M là một điểm tùy ý. Chứng minh rằng :

                            \(\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}=\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • TenAnh1 TenAnh1 A = (-4.3, -5.94) A = (-4.3, -5.94) A = (-4.3, -5.94) B = (11.06, -5.94) B = (11.06, -5.94) B = (11.06, -5.94) D = (10.84, -5.94) D = (10.84, -5.94) D = (10.84, -5.94)
    Giả sử \(\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}=\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{MF}\)
    \(\Leftrightarrow\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB}-\overrightarrow{MD}-\overrightarrow{MF}=\overrightarrow{0}\)
    \(\Leftrightarrow\left(\overrightarrow{MA}-\overrightarrow{MB}\right)+\left(\overrightarrow{MC}-\overrightarrow{MD}\right)+\left(\overrightarrow{ME}-\overrightarrow{MF}\right)=\overrightarrow{0}\)
    \(\Leftrightarrow\overrightarrow{BA}+\overrightarrow{DC}+\overrightarrow{FE}=\overrightarrow{0}\)
    \(\Leftrightarrow\overrightarrow{BA}+\overrightarrow{OB}+\overrightarrow{FE}=\overrightarrow{0}\) (Do tứ giác BCDO là hình bình hành).
    \(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{EF}=\overrightarrow{0}\)
    \(\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\) (do tứ giác AOEF là hình bình hành).

      bởi Phùng Dung 07/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON