-
Câu hỏi:
Xét ba mệnh đề sau:
(1) Nếu hàm số f(x) có đạo hàm tại điểm x=x\(_0\) thì f(x) liên tục tại điểm đó.
(2) Nếu hàm số f(x) liên tục tại điểm x=x\(_0\) thì f(x) có đạo hàm tại điểm đó.
(3) Nếu f(x) gián đoạn tạix=x\(_0\) thì chắc chắn f(x) không có đạo hàm tại điểm đó.
Trong ba câu trên:
- A. Có hai câu đúng và một câu sai.
- B. Có một câu đúng và hai câu sai.
- C. Cả ba đều đúng.
- D. Cả ba đều sai.
Lời giải tham khảo:
Đáp án đúng: A
Đáp án A
(1) Nếu hàm số f(x) có đạo hàm tại điểm x=x\(_0\) thì f(x) liên tục tại điểm đó. Đây là mệnh đề đúng.
(2) Nếu hàm số f (x) liên tục tại điểm x=x\(_0\) thì f(x) có đạo hàm tại điểm đó.
Phản ví dụ
Lấy hàm f(x)=|x| ta có D= R nên hàm số f(x) liên tục trên R.
Nhưng ta có
\(\left\{ {\begin{array}{*{20}{l}} {\mathop {lim}\limits_{x \to {0^ + }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {lim}\limits_{x \to {0^ + }} \frac{{\left| x \right| - 0}}{{x - 0}} = \mathop {lim}\limits_{x \to {0^ + }} \frac{{x - 0}}{{x - 0}} = 1}\\ {\mathop {lim}\limits_{x \to {0^ - }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {lim}\limits_{x \to {0^ - }} \frac{{\left| x \right| - 0}}{{x - 0}} = \mathop {lim}\limits_{x \to {0^ - }} \frac{{ - x - 0}}{{x - 0}} = - 1} \end{array}} \right.\)
Nên hàm số không có đạo hàm tại x = 0.
Vậy mệnh đề (2) là mệnh đề sai.
(3) Nếu f(x) gián đoạn tại x=x\(_0\) thì chắc chắn f(x) không có đạo hàm tại điểm đó.
Vì (1) là mệnh đề đúng nên ta có f(x) không liên tục tại x=x\(_0\) thì f(x) không có đạo hàm tại điểm đó.
Vậy (3) là mệnh đề đúng.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Cho hàm số y = f(x) xác định trên khoảng (a; b) và có đạo hàm tại điểm \(x_0\in\) (a; b). Các mệnh đề nào sau đây đúng.
- Hàm số y = f(x) được gọi là có đạo hàm trên khoảng (a; b) nếu
- Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}} {\frac{{3 - \sqrt {4 - x} }}{4}\;khi\;x \ne 0}\\ {\frac{1}{4}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;khi\;x = 0} \end{array}} \right.\)
- Cho hàm số y = f(x) có đạo hàm tại
- Xét ba mệnh đề sau: (1) Nếu hàm số f(x) có đạo hàm tại điểm x=x\(_0\) thì f(x) liên tục tại điểm đó.
- Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}} {{x^2}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;khi\;x \le 2}\\ { - \frac{{{x^2}}}{2} + bx - 6\;\;khi\;x > 2} \end{array}\;\;\;\;\;} \right.\). Để hàm số này có đạo hàm tại x= 2 thì giá trị của b là
- Cho hàm số \(\left\{ {\begin{array}{*{20}{l}} {\frac{{{x^2} + 3x + 1}}{{x - 1}},\;x > 1}\\ {x - 1,\;x \le 1} \end{array}} \right.\) Chọn khẳng định đúng trong các khẳng định sau:
- Cho đồ thị (H): \(y = \frac{{x + 2}}{{x - 1}}\) và điểm A ∈ (H) có tung độ y = 4
- Tiếp tuyến của đồ thị hàm số \(f(x) = x^3-2x^2-2\) tại điểm có hoành độ x = -2
- Viết phương trình tiếp tuyến của đồ thị hàm số: \(y = 2x^4-4x^2+1\) biết tiếp tuyến song song với đường thẳng y = 48x – 1