YOMEDIA
NONE
  • Câu hỏi:

    Trong mặt phẳng tọa độ Oxy, cho ba điểm A(-6;0), B(0;2) và C(-6;2). Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC.

    • A. (-2;0)  
    • B. (-3;1) 
    • C. (3;-1)  
    • D. (-2;1) 

    Lời giải tham khảo:

    Đáp án đúng: B

    Gọi I(x;y) là tâm đường tròn ngoại tiếp tam giác ABC thì IA = IB = IC.

    \(\begin{array}{l} \Rightarrow I{A^2} = I{B^2} = I{C^2}\\ \Rightarrow \left\{ \begin{array}{l}I{A^2} = I{B^2}\\I{A^2} = I{C^2}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{\left( { - 6 - x} \right)^2} + {\left( { - y} \right)^2} = {\left( { - x} \right)^2} + {\left( {2 - y} \right)^2}\\{\left( { - 6 - x} \right)^2} + {\left( { - y} \right)^2} = {\left( { - 6 - x} \right)^2} + {\left( {2 - y} \right)^2}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{x^2} + 12x + 36 + {y^2} = {x^2} + {y^2} - 4y + 4\\{y^2} = {y^2} - 4y + 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}12x + 4y =  - 32\\ - 4y + 4 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x =  - 3\\y = 1\end{array} \right.\end{array}\)

    Vậy I(-3;1).

    Đáp án B.

    ATNETWORK

Mã câu hỏi: 327110

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON