-
Câu hỏi:
Cho tam giác ABC có AB = 3cm, AC = 10cm, \(\widehat {BAC} = {120^0}\).
1. Tính diện tích tam giác ABC.
2. Tính độ dài đường trung tuyến kẻ từ đỉnh B của tam giác ABC
Lời giải tham khảo:
1. Ta có \({S_{\Delta ABC}} = \frac{1}{2}AB.AC.\sin \widehat {BAC} = \frac{1}{2}.3.10.\sin {120^0} = \frac{{15\sqrt 3 }}{2}\left( {c{m^2}} \right)\)
2. M là trung điểm của AC \(\Rightarrow AM = \frac{1}{2}AC = 5cm\)
Áp dụng định lý Cosin trong tam giác AMB.
\(\begin{array}{l}
B{M^2} = A{B^2} + A{M^2} - 2AB.AM.\cos A\\
\,\,\,\,\,\,\,\,\,\,\,\, = {3^2} + {5^2} - 2.3.5.\cos {120^0} = 49\\
\Rightarrow BM = 7\,\left( {cm} \right)
\end{array}\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Giải bất phương trình \(5{x^2} - \left( {3 - 2{x^2}} \right) \ge 4\)
- Tìm tập xác định của hàm số \(f\left( x \right) = \sqrt {1 - \frac{{8 - {x^2}}}{{4x - {x^2}}}} \)
- Tìm tất cả các giá trị của tham số m để bất phương trình \({x^2} - 2\left( {m - 1} \right)x - 4m < 0\) vô nghiệm.
- Tính diện tích tam giác ABC biết tam giác ABC có AB = 3cm, AC = 10cm, \(\widehat {BAC} = {120^0}\)
- Viết phương trình tham số của đường thẳng d biết trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(8;- 1) và đường thẳng d có phương trình 2x - y - 7 = 0
- Tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y = \frac{{x + 1}}{{\sqrt {{x^2} + 1} }}\).