YOMEDIA
NONE
  • Câu hỏi:

    Tìm số nguyên lớn nhất của \(x\) để \(f\left( x \right) = \frac{{x + 4}}{{{x^2} - 9}} - \frac{2}{{x + 3}} - \frac{{4x}}{{3x - {x^2}}}\) nhận giá trị âm.

    • A. x =  - 2
    • B. x =  - 1
    • C. x = 2
    • D. x = 1

    Lời giải tham khảo:

    Đáp án đúng: C

    Ta có: \(f\left( x \right) = \frac{{x + 4}}{{{x^2} - 9}} - \frac{2}{{x + 3}} - \frac{{4x}}{{3x - {x^2}}}\),\(\left( {x \ne 0,\,\,\,x \ne  \pm 3} \right)\)

    \(\begin{array}{l}f\left( x \right) = \frac{{x + 4}}{{{x^2} - 9}} - \frac{2}{{x + 3}} - \frac{{4x}}{{3x - {x^2}}}\\ = \frac{{x + 4}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} - \frac{2}{{x + 3}} - \frac{{4x}}{{x\left( {3 - x} \right)}}\\ = \frac{{x\left( {x + 4} \right) - 2x\left( {x - 3} \right) + 4x\left( {x + 3} \right)}}{{x\left( {x - 3} \right)\left( {x + 3} \right)}}\\ = \frac{{{x^2} + 4x - 2{x^2} + 6x + 4{x^2} + 12x}}{{x\left( {x - 3} \right)\left( {x + 3} \right)}}\\ = \frac{{3{x^2} + 22x}}{{x\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{{3x + 22}}{{{x^2} - 9}}.\end{array}\)

    Ta có bảng xét dấu:

    \( \Rightarrow f\left( x \right) = \frac{{x + 4}}{{{x^2} - 9}} - \frac{2}{{x + 3}} - \frac{{4x}}{{3x - {x^2}}}\) nhận giá trị âm khi \(x \in \left( { - \infty ;\frac{{ - 22}}{3}} \right) \cup \left( { - 3;0} \right) \cup \left( {0;3} \right)\)

    Vậy giá trị nguyên lớn nhất của \(x\)  để \(f\left( x \right) = \frac{{x + 4}}{{{x^2} - 9}} - \frac{2}{{x + 3}} - \frac{{4x}}{{3x - {x^2}}}\) nhận giá trị âm là \(x = 2\)

    ATNETWORK

Mã câu hỏi: 248025

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON