YOMEDIA
NONE
  • Câu hỏi:

    Tìm \(m\) để phương trình \(\sqrt {{x^2} + mx + 2} {\rm{\;}} = 2x + 1\) có 2 nghiệm phân biệt. 

    • A. \(m > \frac{9}{2}\)     
    • B. \( - \frac{1}{2} \le m \le \frac{9}{2}\)      
    • C. \( - \frac{1}{2} < m < \frac{9}{2}\)   
    • D. \(m \ge \frac{9}{2}\) 

    Lời giải tham khảo:

    Đáp án đúng: D

    Ta có:

    \(\begin{array}{*{20}{l}}{\sqrt {{x^2} + mx + 2} {\rm{\;}} = 2x + 1}\\{ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x \ge {\rm{\;}} - \frac{1}{2}}\\{{x^2} + mx + 2 = 4{x^2} + 4x + 1}\end{array}} \right.}\\{ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x \ge {\rm{\;}} - \frac{1}{2}}\\{3{x^2} - \left( {m - 4} \right)x - 1 = 0{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( * \right)}\end{array}} \right.}\end{array}\)

    Để phương trình ban đầu có 2 nghiệm phân biệt thì phương trình (*) phải có 2 nghiệm phân biệt \({x_1} > {x_2} \ge {\rm{\;}} - \frac{1}{2}\).

    \( \Rightarrow \left\{ \begin{array}{l}\Delta  > 0\\{x_1} + {x_2} >  - 1\\\left( {{x_1} + \frac{1}{2}} \right)\left( {{x_2} + \frac{1}{2}} \right) \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {m - 4} \right)^2} + 12 > 0\,\,(luon\,\,\,dung)\\\frac{{m - 4}}{3} >  - 1\\\frac{{ - 1}}{3} + \frac{1}{2}.\frac{{m - 4}}{3} + \frac{1}{4} \ge 0\end{array} \right.\)

    \( \Leftrightarrow \left\{ \begin{array}{l}m - 4 >  - 3\\\frac{{m - 4}}{6} \ge \frac{1}{{12}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 1\\m - 4 \ge \frac{1}{2}\end{array} \right. \Leftrightarrow m \ge \frac{9}{2}.\)

    Vậy \(m \ge \frac{9}{2}\).

    Chọn D.

    ATNETWORK

Mã câu hỏi: 419245

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON