-
Câu hỏi:
Tìm hạng tử không chứa x trong khai triển \(\left(x^{2}+\frac{1}{x}\right)^{15}\)
- A. 1001
- B. 2002
- C. 3003
- D. 4004
Lời giải tham khảo:
Đáp án đúng: C
Áp dụng công thức thì các hạng tử trong khai triển có dạng \(\mathrm{C}_{15}^{k}\left(x^{2}\right)^{15-k}\left(\frac{1}{x}\right)^{k}=\mathrm{C}_{15}^{k} \frac{x^{30-2 k}}{x^{k}}=\mathrm{C}_{15}^{k} x^{30-3 k}\)
Hạng tử không chứa x khi hay \(30-3 k=0 \Leftrightarrow k=10\)
Hạng tử cần tìm là \(\mathrm{C}_{15}^{10}=3003\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Xếp 6 người A, B, C, D, E, F vào một ghế dài. Có bao nhiêu cách sắp xếp sao cho A và F ngồi cạnh nhau.
- Giả sử đi từ tỉnh A đến tỉnh B có thể đi bằng các phương tiện: ô tô, tàu hỏa, tàu thủy hoặc máy bay. Mỗi ngày có 10 chuyến ô tô, 5 chuyến tàu hỏa, 3 chuyến tàu thủy và 2 chuyến máy bay.
- 253125000 có bao nhiêu ước số tự nhiên?
- Một túi đựng 20 viên bi khác nhau trong đó có 7 bi đỏ, 8 bi xanh và 5 bi vàng. Số cách lấy 3 viên bi khác màu là
- 3 viên bi đen khác nhau, 4 viên bi đỏ khác nhau, 5 viên bi xanh khác nhau. Hỏi có bao nhiêu cách sắp xếp các viên bi trên thành một dãy sao cho các viên bi cùng màu ở cạnh nhau?
- 5 bì thư khác nhau và có 8 con tem khác nhau. Chọn từ đó ra 3 bì thư và 3 con tem sau đó dán 3 con tem lên 3 bì thư đã chọn. Biết rằng một bì thư chỉ dán 1 con tem. Hỏi có bao nhiêu cách dán?
- Xác định có bao nhiêu cách cắm 3 bông hoa giống nhau vào 5 lọ khác nhau (mỗi lọ cắm không quá một bông)?
- 12 học sinh giỏi gồm 3 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10. Hỏi có bao nhiêu cách chọn ra 6 học sinh trong số học sinh giỏi đó sao cho mỗi khối có ít nhất 1 học sinh?
- Hãy tìm hệ số của số hạng chứa x7 trong khai triển nhị thức \(\left(x+\frac{1}{x}\right)^{13},(\text { với } x \neq 0)\)
- Hãy tìm hạng tử không chứa x trong khai triển \(\left(x^{2}+\frac{1}{x}\right)^{15}\)