-
Câu hỏi:
Cho véctơ \(\overrightarrow{a}=\left( 1;3;4 \right)\), tìm véctơ \(\overrightarrow{b}\) cùng phương với véctơ \(\overrightarrow{a}\).
-
A.
\(\overrightarrow{b}=\left( -2;6;8 \right)\).
-
B.
\(\overrightarrow{b}=\left( -2;-6;-8 \right)\).
-
C.
\(\overrightarrow{b}=\left( -2;-6;8 \right)\).
- D. \(\overrightarrow{b}=\left( 2;-6;-8 \right)\).
Lời giải tham khảo:
Đáp án đúng: B
-
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Cho véctơ \(\overrightarrow{a}=\left( 1;3;4 \right)\), tìm véctơ \(\overrightarrow{b}\) cùng phương với véctơ \(\overrightarrow{a}\).
- Trong không gian \(Oxyz\), cho hai điểm \(A\left( 1;\,1;\,-2 \right)\) và \(B\left( 2;\,2;\,1 \right)\). Vectơ \(\overrightarrow{AB}\) có tọa độ là
- Trong không gian \(Oxyz\) cho mặt cầu \(\left( S \right):\,{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-6x+4y-2z+5=0\) và mặt phẳng \(\left( P \right):\,x+2y+2z+11=0\). Tìm điểm \(M\) trên mặt cầu \(\left( S \right)\) sao cho khoảng cách từ \(M\)đến \(\left( P \right)\) là ngắn nhất.
- Trong không gian với hệ trục tọa độ \(Oxyz\), cho mặt phẳng \(\left( \alpha \right)\) có phương trình \(2x+4y-3z+1=0\), một véctơ pháp tuyến của mặt phẳng \(\left( \alpha \right)\) là
- Trong không gian \(Oxyz\), mặt phẳng \(\left( P \right):\,x+2y-6z-1=0\) đi qua điểm nào dưới đây?
- Trong không gian với hệ trục tọa độ \(Oxyz\), mặt cầu đi qua ba điểm \(A\left( 2;0;1 \right)\), \(B\left( 1;0;0 \right)\), \(C\left( 1;1;1 \right)\) và có tâm thuộc mặt phẳng \(\left( P \right):x+y+z-2=0\) có phương trình là
- Trong không gian với hệ tọa độ \(Oxyz\), cho ba điểm \(A\left( 2;-1;5 \right)\), \(B\left( 5;-5;7 \right)\) và \(M\left( x;y;1 \right)\). Với giá trị nào của \(x\) và \(y\) thì \(3\) điểm A,B,M thẳng hàng?
- Trong không gian với hệ trục tọa độ \(Oxyz\), cho tứ diện \(ABCD\) có ba đỉnh \(A\left( 2\text{ };1\text{ };-1 \right)\), \(B\left( 3;\text{ }0\text{ };1 \right)\)\(C\left( 2\text{ };-1\text{ };\text{ }3 \right)\) và đỉnh \(D\) nằm trên tia \(Oy.\)Tìm tọa độ đỉnh \(D\), biết thể tích tứ diện \(ABCD\) bằng \(5\).
- Trong không gian \(\text{O}xyz\) , cho mặt cầu \(\left( S \right)\,:\,{{\left( x-1 \right)}^{2}}\,+\,{{\left( y+2 \right)}^{2}}\,+\,{{\left( z+1 \right)}^{2}}\,=\,16\). Tìm tọa độ tâm \(I\)của mặt cầu \(\left( S \right)\).
- Trong không gian \(Oxyz,\) mặt cầu \(\left( S \right)\) có phương trình: \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-4y+6z+10=0.\) Bán kính của mặt cầu \(\left( S \right)\) bằng:
- Trong không gian với hệ trục toạ độ \(Oxyz\) cho các phương trình sau, phương trình nào không phải là phương trình của mặt cầu?
- Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{{\left( x-2 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=9\) và \(M\left( {{x}_{0}};{{y}_{0}};{{z}_{0}} \right)\in \left( S \right)\) sao cho \(A={{x}_{0}}+2{{y}_{0}}+2{{z}_{0}}\) đạt giá trị nhỏ nhất. Khi đó \({{x}_{0}}+{{y}_{0}}+{{z}_{0}}\) bằng
- Trong không gian với hệ tọa độ Oxyz, mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x+4y-4=0\) cắt mặt phẳng \(\left( P \right):x+y-z+4=0\) theo giao tuyến là đường tròn \(\left( C \right)\). Tính diện tích S của đường tròn \(\left( C \right)\)
- Trong không gian Oxyz, cho mặt phẳng \(\left( \alpha \right):4x-3y+2z+28=0\) và điểm \(I\left( 0;1;2 \right)\).Viết phương trình của mặt cầu \(\left( S \right)\) có tâm I và tiếp xúc với mặt phẳng \(\left( \alpha \right)\)
- Trong hệ tọa độ \(Oxyz\), mặt cầu \(\left( S \right)\) đi qua \(A\left( -1;2;0 \right)\), \(B\left( -2;1;1 \right)\) và có tâm nằm trên trục Oz, có phương trình là
- Trong không gian \(Oxyz\), mặt cầu tâm \(I\left( 1;2;-1 \right)\) và cắt mặt phẳng \(\left( P \right):x-2y-2z-8=0\,\) theo một đường tròn có bán kính bằng \(4\) có phương trình là
- Tìm mệnh đề sai trong các mệnh đề sau:
- Trong mặt không gian tọa độ \(Oxyz\), cho tam giác ABC với \(A\left( -2;1;-3 \right)\), \(B\left( 5;3;-4 \right)\), \(C\left( 6;-7;1 \right)\). Tọa độ trọng tâm \(G\) của tam giác là
- Trong không gian \(Oxyz\), cho hai điểm \(A\left( 1;5;-2 \right)\), \(B\left( 3;1;2 \right)\). Viết phương trình của mặt phẳng trung trực của đoan thẳng AB.
- Trong không gian với hệ tọa độ \(Oxyz,\) tính khoảng cách từ điểm \(M(1;2;-3)\) đến mặt phẳng \((P):x+2y-2z-2=0.\)
- Trong không gian với hệ tọa độ \(Oxyz,\) cho ba điểm\(A\left( 2;-1;3 \right),\) \(B\left( 4;0;1 \right)\) và \(C\left( -10;5;3 \right).\) Véctơ nào dưới đây là véctơ pháp tuyến của mặt phẳng\(\left( ABC \right)\)?
- Trong không gian với hệ tọa độ \(Oxyz\), cho mặt phẳng \(\left( P \right):2x+2y-z-1=0\). Mặt phẳng nào sau đây song song với \(\left( P \right)\) và cách \(\left( P \right)\) một khoảng bằng 3?
- Trong không gian \(Oxyz\), cho điểm \(E\left( 1;1;-1 \right)\). Gọi \(A\), \(B\) và \(C\) là hình chiếu vuông góc của \(E\) trên các trục tọa độ \(Ox\),\(Oy\),\(Oz\). Điểm nào sau đây thuộc mặt phẳng\(\left( ABC \right)\)?
- Trong không gian tọa độ \(Oxyz,\) cho ba véctơ \(\overrightarrow{a}\left( 3;0;1 \right),\) \(\overrightarrow{b}\left( 1;-1;-2 \right),\) \(\overrightarrow{c}\left( 2;1;-1 \right)\). Tính \(T=\overrightarrow{a}.\left( \overrightarrow{b}+\overrightarrow{c} \right)\).
- Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( 3;-4;0 \right)\), \(B\left( 0;2;4 \right)\),\(C\left( 4;2;1 \right)\). Tìm tọa độ điểm D thuộc trục Ox sao cho AD=BC.