YOMEDIA
NONE
  • Câu hỏi:

    Cho phương trình \({x^2} + 2x - {m^2} = 0.\) Biết rằng có hai giá trị \({m_1},\,\,{m_2}\) của tham số m để phương trình có hai nghiệm \({x_1},\,\,{x_2}\) thỏa mãn \(x_1^3 + x_2^3 + 10 = 0.\) Tính \({m_1}.{m_2}.\)

    • A. \(\dfrac{3}{4}\)  
    • B. \( - \dfrac{1}{3}\) 
    • C. \( - \dfrac{3}{4}\)    
    • D. \(\dfrac{1}{3}\)  

    Lời giải tham khảo:

    Đáp án đúng: B

    Phương trình đã cho có hai nghiệm phân biệt \( \Leftrightarrow \Delta ' > 0\)

    \( \Leftrightarrow 1 + {m^2} > 0\,\,\,\forall m\)

    \( \Rightarrow \) Phương trình đã cho luôn có hai nghiệm phân biệt \({x_1},\,{x_2}\) với mọi m.

    Áp dụng định lý Vi-et ta có:\(\left\{ \begin{array}{l}{x_1} + {x_2} =  - 2\\{x_1}{x_2} =  - {m^2}\end{array} \right..\)

    Theo đề bài ta có: \(x_1^3 + x_2^3 + 10 = 0\)

    \(\begin{array}{l} \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^3} - 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right) + 10 = 0\\ \Leftrightarrow {\left( { - 2} \right)^3} - 3\left( { - {m^2}} \right)\left( { - 2} \right) + 10 = 0\\ \Leftrightarrow  - 8 - 6{m^2} + 10 = 0\\ \Leftrightarrow 6{m^2} = 2 \Leftrightarrow {m^2} = \dfrac{1}{3}\\ \Leftrightarrow \left[ \begin{array}{l}{m_1} =  - \dfrac{1}{{\sqrt 3 }}\\{m_2} = \dfrac{1}{{\sqrt 3 }}\end{array} \right. \Rightarrow {m_1}{m_2} =  - \dfrac{1}{{\sqrt 3 }}.\dfrac{1}{{\sqrt 3 }} =  - \dfrac{1}{3}.\end{array}\)

    Đáp án  B.

    ATNETWORK

Mã câu hỏi: 320120

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON