-
Câu hỏi:
Phát biểu nào dưới đây là mệnh đề sai?
- A. 5 là ước của 125.
- B. 2020 chia hết cho 101.
- C. 9 là số chính phương.
- D. 91 là số nguyên tố.
Lời giải tham khảo:
Đáp án đúng: D
Ta có 91 = 7.13 nên 91 là hợp số.
Vậy đáp án D sai.
Đáp án D.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Cho parabol \(\left( P \right):\,\,y = a{x^2} + bx + c\) có a < 0 và tọa độ đỉnh là (2;5). Tìm điều kiện của tham số m để phương trình \(a{x^2} + bx + c = m\) vô nghiệm.
- Cho tam giác đều ABC có cạnh bằng a. Khi đó \(\left| {\overrightarrow {AB} + \overrightarrow {CA} } \right|\) bằng:
- Gọi A, B là các giao điểm của đồ thị hàm số \(f\left( x \right) = 3{x^2} - 2\) và \(g\left( x \right) = 2{x^2} - x + 4\). Phương trình đường thẳng AB là:
- Tìm số phần tử của tập hợp \(A = \left\{ {x \in \mathbb{Z}; - 3 < x \le 4} \right\}\).
- Tìm giao điểm của parabol \(\left( P \right):\,\,y = - {x^2} - 2x + 5\) với trục Oy.
- Cho tam giác ABC có AM là đường trung tuyến. Gọi I là trung điểm của AM. Trong các mệnh đề sau, mệnh đề nào đúng.
- Cho biết tập hợp A gồm 3 phần tử. Hỏi tập hợp A có bao nhiêu tập con.
- Cho hàm số \(y = \left( {m - 5} \right){x^2} - 5x + 1\). Hàm số đã cho là hàm số bậc nhất khi:
- Hàm số đã cho nào dưới đây là hàm số chẵn trên tập xác định của nó?
- Gọi S là tập hợp tất cả các giá trị của tham số m để đồ thị hàm số \(y = {x^2} + 5x + 2m\) cắt trục Ox tại hai điểm phân biệt A, B thỏa mãn OA = 4OB. Tổng các phần tử của S bằng:
- Xác định hàm số bậc hai sau \(y = a{x^2} - x + c\) biết đồ thị hàm số đi qua A(1;-2) và B(2;3).
- Hàm số \(y = - {x^2} + 5x - 6\) đồng biến trên khoảng nào dưới đây?
- Cho đồ thị \(\left( P \right):\,\,y = {x^2} + 4x - 2\). Điểm nào dưới đây thuộc (P)?
- Gọi \({m_0}\) là giá trị của m để hệ phương trình \(\left\{ \begin{array}{l}x + 3y = m\\mx + y = m - \dfrac{2}{9}\end{array} \right.\) có vô số nghiệm. Khi đó
- Gọi \({x_1};\,{x_2}\) là các nghiệm của phương trình \({x^2} + 4x - 15 = 0\). Tính \(\left| {{x_1} - {x_2}} \right|\).
- Đồ thị hàm số \(y = 3{x^2} + 4x - 1\) nhận đường thẳng nào dưới đây làm trục đối xứng?
- Tìm tập nghiệm của phương trình \(\sqrt {3{x^2} - 4x + 4} = 3x + 2\).
- Tọa độ đỉnh của parabol \(\left( P \right):\,\,y = - {x^2} + 2x - 3\) là:
- Cho cácphát biểu như dưới đây, cho biết phát biểu nào dưới đây là mệnh đề sai?
- Cho tập hợp A = {0;1;2;3;4} và B = {0;2;4;6;8}. Hỏi tập hợp \(\left( {A\backslash B} \right) \cup \left( {B\backslash A} \right)\) có bao nhiêu phần tử?
- Đường thẳng đi qua hai điểm A(-1;4) và B(2;-7) có phương trình là:
- Tìm tập hợp tất cả các giá trị của tham số m để hàm số \(y = \sqrt {{x^2} + {m^2}} + \sqrt {{x^2} - m} \) có tập xác định là R.
- Trong mặt phẳng tọa độ Oxy, cho ba điểm A(-6;0), B(0;2) và C(-6;2). Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC.
- Tìm tập xác định của hàm số \(y = \sqrt {x + 2} - \dfrac{2}{{x - 3}}\).
- Cho hình thoi ABCD có \(\angle BAD = {60^0}\) và BA = a. Gọi M, N lần lượt là trung điểm của AD, DC. Tính \(\overrightarrow {BM} .\overrightarrow {BN} \) bằng:
- Cho phương trình \({x^3} + 3{x^2} + \left( {4{m^2} - 12m + 11} \right)x + {\left( {2m - 3} \right)^2} = 0.\) Tập hợp tất cả các giá trị của tham số m để phương trình có 3 nghiệm phân biệt.
- Cho tam giác ABC, lấy các điểm M, N trên cạnh BC sao cho BM = MN = NC. Gọi \({G_1},\,\,{G_2}\) lần lượt là trọng tâm tam giác ABN, ACM. Biết rằng \(\overrightarrow {{G_1}{G_2}} \) được biểu diễn theo hai vecto \(\overrightarrow {AB} ,\,\,\overrightarrow {AC} \) dưới dạng \(\overrightarrow {{G_1}{G_2}} = x\overrightarrow {AB} + y\overrightarrow {AC} .\) Khi đó x + y bằng:
- Trong mặt phẳng tọa độ Oxy, cho các vecto \(\overrightarrow a = \left( {3; - 1} \right),\,\,\overrightarrow b = \left( {5; - 4} \right),\,\,\overrightarrow c = \left( {1; - 5} \right).\) Biết \(\overrightarrow c = x\overrightarrow a + y\overrightarrow b .\) Tính x + y.
- Cho hình chữ nhật ABCD có AB = a, AC = 2a. Tính góc giữa hai vecto \(\overrightarrow {CA} \) và \(\overrightarrow {DC} .\)
- Hàm số nào dưới đây đồng biến trên tập sau \(\mathbb{R}?\)
- Cho hệ phương trình \(\left\{ \begin{array}{l}x - \left( {m + 1} \right)y = m - 2\\2mx + \left( {m - 2} \right)y = 4\end{array} \right.\). Biết rằng có hai giá trị của tham số m là m1và m2 để hệ phương trình có nghiệm \(\left( {{x_0};2} \right)\). Tính m1 + m2.
- Phương trình \(\left| {3 - x} \right| = \left| {2x - 5} \right|\) có hai nghiệm \({x_1},\,\,{x_2}.\) Tính \({x_1} + {x_2}.\)
- Có bao nhiêu giá trị nguyên của tham số m để phương trình \({\left( {{x^2} + 6x + 10} \right)^2} + m = 10{\left( {x + 3} \right)^2}\) có 4 nghiệm phân biệt?
- Trong mặt phẳng tọa độ Oxy, cho các điểm A(4; 3), B(0; –1), C(1;–2). Tìm tọa độ điểm M biết rằng vetco \( - 2\overrightarrow {MA} + 3\overrightarrow {MB} - 3\overrightarrow {MC} \) có tọa độ là (1; 7).
- Cho phương trình \({x^2} + 2x - {m^2} = 0.\) Biết rằng có hai giá trị \({m_1},\,\,{m_2}\) của tham số m để phương trình có hai nghiệm \({x_1},\,\,{x_2}\) thỏa mãn \(x_1^3 + x_2^3 + 10 = 0.\) Tính \({m_1}.{m_2}.\)
- Trong mặt phẳng tọa độ Oxy, cho các điểm \(A\left( {m; - 1} \right),\,\,B\left( {2;\,\,1 - 2m} \right),\,\,C\left( {3m + 1; - \dfrac{7}{3}} \right).\) Biết rằng có hai giá trị \({m_1},\,\,{m_2}\) của tham số m để A, B, C thẳng hàng. Tính \({m_1} + {m_2}.\)
- Gọi (a; b; c) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}5x + y + z = 5\\x - 3y + 2z = 11\\ - x + 2y + z = - 3\end{array} \right..\) Tính \({a^2} + {b^2} + {c^2}.\)
- Tìm tập nghiệm của phương trình \(\sqrt {4x + 1} + 5 = 0.\)
- Trong mặt phẳng với hệ trục tọa độ \(\left( {O;\,\,\overrightarrow i ;\,\,\overrightarrow j } \right)\) cho điểm M thỏa mãn \(\overrightarrow {OM} = - 2\overrightarrow i + 3\overrightarrow j .\) Tọa độ của M là:
- Gọi M, N lần lượt là trung điểm các cạnh CD, AB của hình bình hành ABCD. Hãy tìm mệnh đề đúng trong các mệnh đề sau: