-
Câu hỏi:
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = x,\,AD = 1.\) Biết rằng góc giữa đường thẳng \(A'C\) và mặt phẳng \(\left( {ABB'A'} \right)\) bằng \({30^0}.\) Tìm giá trị lớn nhất \({V_{\max }}\) của thể tích khối hộp \(ABCD.A'B'C'D'\)
- A. \({V_{\max }} = \frac{{\sqrt 3 }}{4}\)
- B. \({V_{\max }} = \frac{1}{2}\)
- C. \({V_{\max }} = \frac{3}{2}\)
- D. \({V_{\max }} = \frac{{3\sqrt 3 }}{4}\)
Lời giải tham khảo:
Đáp án đúng: C
Ta có \(BC \bot \left( {ABB'A'} \right) \Rightarrow A'B\) là hình chiếu của \(A'C\) lên \(\left( {ABB'A'} \right)\)
\( \Leftrightarrow \angle \left( {A'C;\left( {ABB'A'} \right)} \right) = \angle \left( {A'C;A'B} \right) = \angle BA'C = {30^0}\).
\(BC \bot \left( {ABB'A'} \right) \Rightarrow BC \bot A'B \Rightarrow \Delta A'BC\) vuông tại A’.
Xét tamg giác vuông A’BC có : \(A'B = BC.\cot {30^0} = \sqrt 3 \)
Xét tam giác vuông AA’B có : \(AA' = \sqrt {A'{B^2} - A{B^2}} = \sqrt {3 - {x^2}} \)
\( \Rightarrow {V_{ABC.A'B'C'}} = AA'.AB.AD = \sqrt {3 - {x^2}} .x = V\)
Áp dụng BĐT Cô-si ta có \(\sqrt {3 - {x^2}} .x \le \frac{{3 - {x^2} + {x^2}}}{2} = \frac{3}{2} \Rightarrow {V_{\max }} = \frac{3}{2} \Leftrightarrow 3 - {x^2} = {x^2} \Leftrightarrow x = \frac{{\sqrt 6 }}{2}\).
Chọn C.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Cho tứ diện \(ABCD\), trên các cạnh \(BC,\,\,BD,\,\,AC\) lần lượt lấy các điểm \(M,\,\,N,\,\,P\) sao cho \(BC = 3BM,\,\,BD = \dfrac{3}{2}BN,\,\,AC = 2AP\). Mặt phẳng \(\left( {MNP} \right)\) chia khối tứ diện \(ABCD\) thành 2 phần có thể tích là \({V_1},\,\,{V_2}\). Tính tỉ số \(\dfrac{{{V_1}}}{{{V_2}}}\)
- Cho biết có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 10;10} \right]\) để bất phương trình sau nghiệm đúng \(\forall x \in
- Tính góc giữa hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {MNP} \right)\).
- Cho hàm số \(f\left( x \right),\,\,f\left( { - x} \right)\) liên tục trên \(\mathbb{R}\) và thỏa mãn \(2f\left( x \right) + 3f\left( { - x} \right) = \dfrac{1}{{4 + {x^2}}}\). Tính \(I = \int\limits_{ - 2}^2 {f\left( x \right)dx} \).
- Cho \(\int\limits_1^2 {f\left( x \right)dx} = 2\). Tính \(\int\limits_1^4 {\dfrac{{f\left( {\sqrt x } \right)}}{{\sqrt x }}dx} \) bằng :
- Cho các số thực dương \(a,\,\,b\) với \(a \ne 1\) và \({\log _a}b > 0\). Khẳng định nào sau đây là đúng ?
- Cho hàm số sau \(y = f\left( x \right)\) có đạo hàm \(f\left( x \right) = {x^2}\left( {x - 1} \right){\left( {{x^2} - 1} \right)^3},\,\,\forall x
- Cho hai tích phân sau \(\int\limits_{ - 2}^5 {f\left( x \right)dx} = 8\) và \(\int\limits_5^{ - 2} {g\left( x \right)dx} = 3\).
- Cho hình chóp đều \(S.ABCD\) có đáy là hình vuông \(ABCD\) tâm \(O\) cạnh \(2a\), cạnh bên \(SA = a\sqrt 5 \). Khoảng cách giữa \(BD\) và \(SC\) là :
- Rút gọn biểu thức sau \(P = \frac{{{{\left( {{a^{\sqrt 3 - 1}}} \right)}^{\sqrt 3 + 1}}}}{{{a^{4 - \sqrt 5 }}.
- Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị thực của tham số \(m\) để phương trình \(f\left( {\cos x} \right) = m\) có 2 nghiệm phân biệt thuộc \(\left( {0;\dfrac{{3\pi }}{2}} \right]\) là:
- Cho hàm số \(y = f\left( x \right)\) bảng biến thiên như sau:
- Trong không gian với hệ tọa độ \(Oxyz\) cho ba điểm \(A\left( {1;0;0} \right);\,\,B\left( {0;2;0} \right);\,\,C\left( {0;0;3} \right)\). Thể tích tứ diện \(OABC\) bằng:
- Gọi \(m\) và \(M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số sau \(y = x - \sqrt {4 - {x^2}} \).
- Cho mặt phẳng \(\left( P \right)\) đi qua các điểm \(A\left( { - 2;0;0} \right);\,\,B\left( {0;3;0} \right);\,\,C\left( {0;0; - 3} \right)\). Mặt phẳng \(\left( P \right)\) vuông góc với mặt phẳng nào trong các mặt phẳng sau:
- Trong không gian với hệ tọa độ \(Oxyz\) cho bốn điểm \(A\left( {1;0;2} \right),\,\,\,B\left( { - 2;1;3} \right),\,\,C\left( {3;2;4} \right),\) \(D\left( {6;9; - 5} \right)\). Tọa độ trọng tâm của tứ diện \(ABCD\) là:
- Tập xác định của hàm số sau \({\left( {{x^2} - 3x + 2} \right)^\pi }\) là:
- Trong không gian \(Oxyz\), cho mặt cầu có phương trình \({x^2} + {y^2} + {z^2} - 2x + 4y - 6z + 9 = 0\). Tọa độ tâm \(I\) và bán kính \(R\) của mặt cầu là:
- Tích phân \(\int\limits_0^2 {\dfrac{x}{{{x^2} + 3}}dx} \) bằng:
- Em hãy tìm mệnh đề sai trong các mênh đề sau:
- Tìm tất cả các giá trị thực của tham số m để phương trình \(f\left( x \right) - 1 = m\) có đúng 2 nghiệm.
- Trong không gian với hệ trục tọa độ \(Oxyz\), cho biết \(\overrightarrow a = - \overrightarrow i + 2\overrightarrow j -
- Hàm số \(y = {\left( {f\left( {3 - x} \right)} \right)^2}\) nghịch biến trên khoảng nào dưới đây?
- Tính khoảng cách giữa các tiếp tuyến của đồ thị hàm \(f\left( x \right) = {x^3} - 3x + 1\,\,\left( C \right)\) tại cực trị của \(\left( C \right)\).
- Khối trụ tròn xoay có đường kính là bằng \(2a\), chiều cao là \(h = 2a\) có thể tích là:
- Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau: Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:
- Gọi \(l,\,\,h,\,\,r\) lần lượt là độ dài đường sinh, chiều cao và bán kính mặt đáy của hình nón. Diệnt ích xung quanh \({S_{xq}}\) của hình nón là:
- Cho hàm số \(y = f\left( x \right)\) có \(f'\left( x \right)\) liên tục trên \(\left[ {0;2} \right]\) và \(f\left( 2 \right) = 16\); \(\int\limits_0^2 {f\left( x \right)dx} = 4\). Tính \(I = \int\limits_0^1 {xf'\left( {2x} \right)dx} \)
- Cho khối hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a,\,\,AD = b,\,AA' = c\). Thể tích khối hộp chữ nhật \(ABCD.A'B'C'D'\) bằng bao nhiêu?
- Đặt \(a = {\log _2}5,\,\,b = {\log _3}5\). Biểu diễn \({\log _6}5\) theo \(a\) và \(b\).
- Cho hàm số \(y = f\left( x \right),\,\,y = g\left( x \right)\) liên tục trên \(\left[ {a;b} \right]\) và số thực \(k\) tùy ý. Trong các khẳng định sau, khẳng định nào sai?
- Tính xác suấ để số được chọn luôn có mặt chữ số 2 và thỏa mãn \({a_1} < {a_2} < {a_3} < {a_4} > {a_5} > {a_6} > {a_7}\).
- Cho \(f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ { - 1;1} \right]\) và \(\int\limits_{ - 1}^1 {f\left( x \right)dx} = 4\). Kết quả \(I = \int\limits_{ - 1}^1 {\dfrac{{f\left( x \right)}}{{1 + {e^x}}}dx} \) bằng:
- Cho khối lăng trụ \(ABC.ABC\) có thể tích bằng \(V\). Hãy tính thể tích khối tứ diện \(ABCBC\).
- Một khối gỗ hình lập phương có thể tích \({V_1}\). Một người thợ mộc muốn gọt giũa khối gỗ đó thành một khối trụ có thể tích là \({V_2}\). Tính tỉ số lớn nhất \(k = \dfrac{{{V_2}}}{{{V_1}}}\)?
- Cho hàm số \(y = f\left( x \right)\) có bảng biế thiên như sau: Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
- Tính \(\lim \dfrac{{\sqrt {4{n^2} + 1} - \sqrt {n + 2} }}{{2n - 3}}\) bằng:
- Hãy tìm tập nghiệm của bất phương trình \({\log _{\frac{2}{5}}}\left( {x - 4} \right) + 1 > 0\).
- Có bao nhiêu số tự nhiên có bốn chữ số khác nhau được tạo thành từ các chữ số của tập sau \(X = \left\{ {1;3;5;8;9} \righ
- Cho cấp số nhân sau \(\left( {{u_n}} \right)\) có tổng \(n\) số hạng đầu tiên là \({S_n} = {6^n} - 1\).
- Tìm điểm \(M \in \left( {Oxy} \right)\) sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + 3\overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất.
- Tìm tất cả các giá trị thực của m để hàm số \(y = \dfrac{1}{3}{x^3} - \left( {m - 1} \right){x^2} - 4mx\) đồng biến trên đoạn \(\left[ {1;4} \right]\).
- Trong không gian với hệ tọa độ Oxyz, cho các vectơ sau \(\overrightarrow a = \left( {2;m - 1;3} \right);\,\,\overrightarrow b = \l
- Trong các hàm số sau, hàm số nào nghịch biến trên tập số thực \(\mathbb{R}\)?
- Mệnh đề nào sau đây Sai về hàm số mũ?
- Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = x,\,AD = 1.\) Biết rằng góc giữa đường thẳng \(A'C\) và mặt phẳng \(\left( {ABB'A'} \right)\) bằng \({30^0}.\) Tìm giá trị lớn nhất \({V_{\max }}\) của thể tích khối hộp \(ABCD.A'B'C'D'\)
- Cho \({\left( {x - 2} \right)^{\frac{{ - 1}}{3}}} > {\left( {x - 2} \right)^{\frac{{ - 1}}{6}}},\) khẳng định nào sau đây Đúng?
- Trong tất cả các hình thang cân có cạnh bên bằng \(2\) và cạnh đáy nhỏ bằng \(4\) , tính chu vi \(P\) của hình thang có diện tích lớn nhất.
- Cho biết \({\log _8}\left| x \right| + {\log _4}{y^2} = 5\) và \({\log _8}\left| y \right| + {\log _4}{x^2} = 7.
- Trải mặt xung quanh của một hình nón lên một mặt phẳng ta được hình quạt (xem hình cho bên dưới) là phần của hình tròn