YOMEDIA
NONE
  • Câu hỏi:

    Một hình chữ nhật ABCD có AB > AD, diện tích và chu vi của nó theo thứ tự la 2a2 và 6a. Cho hình chữ nhật ABCD quay xung quanh cạnh AB, ta được một hình trụ. Tính thể tích của hình trụ này.

    • A.  \(\pi {a}\)
    • B.  \(2\pi {a^2}\)
    • C.  \(\pi {a^3}\)
    • D.  \(2\pi {a^3}\)

    Lời giải tham khảo:

    Đáp án đúng: D

    Gọi chiều dài AB = x và chiều rộng AD = y ta có:

    Diện tích hình chữ nhật là

    \(2{a^2} \Rightarrow xy = 2{a^2}\).

    Chu vi hình chữ nhật là 6a

    \(\Rightarrow 2\left( {x + y} \right) = 6a \Leftrightarrow x + y = 3a\).

    Khi đó x, y là nghiệm của phương trình \({X^2} - 3aX + 2{a^2} = 0\) (định lí Vi-ét đảo).

    Ta có:

    \(\Delta = {\left( {3a} \right)^2} - 4.2{a^2} = {a^2} \\\Rightarrow \left[ \begin{array}{l}{X_1} = \dfrac{{3a + a}}{2} = 2a\\{X_2} = \dfrac{{3a - a}}{2} = a\end{array} \right.\).

    Do \(AB > AD \Rightarrow \left\{ \begin{array}{l}AB = 2a\\AD = a\end{array} \right.\).

    Quay hình chữ nhật ABCD quanh cạnh AB ta được hình trụ có chiều cao h = AB = 2a, bán kính đáy R = AD = a.

    Vậy thể tích của khối trụ đó là 

    \(V = \pi {R^2}h = \pi .{a^2}.2a = 2\pi {a^3}\)

    ATNETWORK

Mã câu hỏi: 220468

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON