ADMICRO
VIDEO
  • Câu hỏi:

    Cho hình chóp \(S.ABC\) có đáy là tam giác \(ABC\) thỏa mãn \(AB = AC = 4,\) \(\widehat {BAC} = 30^\circ .\) Mặt phẳng \(\left( P \right)\) song song với \(\left( {ABC} \right)\) cắt đoạn \(SA\) tại \(M\) sao cho \(SM = 2MA.\) Diện tích thiết diện của \(\left( P \right)\) và hình chóp \(S.ABC\) bằng bao nhiêu? 

    • A. \(\frac{{16}}{9}.\)
    • B. \(\frac{{14}}{9}.\)
    • C. \(\frac{{25}}{9}.\)
    • D. \(1.\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Diện tích tam giác \(ABC\) là \({S_{\Delta ABC}} = \frac{1}{2}.AB.AC.\sin \widehat {BAC} = \frac{1}{2}.4.4.\sin {30^0} = 4.\)

    Gọi \(N,\,\,P\) lần lượt là giao điểm của mặt phẳng \(\left( P \right)\) và các cạnh \(SB,\,\,SC.\)

    Vì \(\left( P \right)\)//\(\left( {ABC} \right)\) nên theoo định lí Talet, ta có \(\frac{{SM}}{{SA}} = \frac{{SN}}{{SB}} = \frac{{SP}}{{SC}} = \frac{2}{3}.\)

    Khi đó \(\left( P \right)\) cắt hình chóp \(S.ABC\) theo thiết diện là tam giác \(MNP\) đồng dạng với tam giác \(ABC\) theo tỉ số \(k = \frac{2}{3}.\) Vậy \({S_{\Delta MNP}} = {k^2}.{S_{\Delta ABC}} = {\left( {\frac{2}{3}} \right)^2}.4 = \frac{{16}}{9}.\)

    ADSENSE

Mã câu hỏi: 15733

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

ADMICRO

 

YOMEDIA
ON