-
Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) liên tục trên R và thỏa mãn \({f^3}\left( x \right) + f\left( x \right) = x\) với mọi \(x \in R.\) Tính \(I = \int\limits_0^2 {f\left( x \right){\rm{d}}x} .\)
- A. \(I = - \frac{4}{5}.\)
- B. \(I = \frac{4}{5}.\)
- C. \(I = - \frac{5}{4}.\)
- D. \(I = \frac{5}{4}.\)
Lời giải tham khảo:
Đáp án đúng: D
Đặt \(u = f\left( x \right)\), ta thu được \({u^3} + u = x.\) Suy ra \(\left( {3{u^2} + 1} \right){\rm{d}}u = {\rm{d}}x.\)
Từ \({u^3} + u = x\), ta đổi cận \(\left\{ \begin{array}{l}
x = 0 \to u = 0\\
x = 2 \to u = 1
\end{array} \right..\) Khi đó \(I = \int\limits_0^1 {u\left( {3{u^2} + 1} \right){\rm{d}}u} = \frac{5}{4}.\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Cho hàm số \(f(x)\) có đạo hàm liên tục trên \(\left[ {0;1} \right],\) thỏa \(2f\left( x \right) + 3f\left( {1 - x} \right) =
- Cho hàm số \(f(x)\) có đạo hàm liên tục trên \(\left[ {0;1} \right],\) thỏa mãn \(f\left( 0 \right) = f\left( 1 \right) = 1.
- Cho các hàm số \(y = f\left( x \right),y = g\left( x \right)\) có đạo hàm liên tục trên \(\left[ {0;2} \right]\) và thỏa mã
- Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\left[ {0; + \infty } \right)\) và thỏa \(\int\limits_0^{{x^2}} {f\left( t \r
- Cho hàm số \(f(x)\) liên tục trên \(\left[ {a; + \infty } \right)\) với \(a>0\) và thỏa \(\int\limits_a^x {\frac{{f\left
- Cho \(\int\limits_0^{2017} {f\left( x \right){\rm{d}}x} = 2\).
- Cho hàm số \(f(x)\) liên tục trên R và \(\int\limits_1^9 {\frac{{f\left( {\sqrt x } \right)}}{{\sqrt x }}{\rm{d}}x = 4} ,{\rm{ }}\in
- Cho hàm số \(f(x)\) liên tục trên R và \(\int\limits_0^{\frac{\pi }{4}} {f\left( {\tan x} \right){\rm{d}}x} = 4,{\rm{ }}\int\l
- Cho hàm số \(f(x)\) liên tục trên R và thỏa mãn \(\int\limits_0^{\frac{\pi }{4}} {\tan x.
- Cho hàm số \(y=f(x)\) xác định và liên tục trên \(\left[ {\frac{1}{2};2} \right],\) thỏa \(f\left( x \right) + f\left( {\frac{
- Cho hàm số \(f(x)\) liên tục trên R và thỏa \(f\left( x \right) + f\left( { - x} \right) = \sqrt {2 + 2\cos 2x} \) với mọ
- Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên R thỏa \(f\left( {{x^5} + 4x + 3} \right) = 2x + 1\) với mọ
- Cho các hàm số \(f(x), g(x)\) liên tục trên \(\left[ {0;1} \right],\) thỏa \(m.f\left( x \right) + n.
- Cho hàm số \(f(x)\) xác định và liên tục trên \(\left[ {0;1} \right],\) thỏa mãn \(f\left( x \right) = f\left( {1 - x} \right
- Cho hàm số \(y = f\left( x \right)\) liên tục trên R và thỏa mãn \({f^3}\left( x \right) + f\left( x \right) = x\) với m�
- Cho hàm số \(f\left( x \right)\) thỏa mãn \(\int\limits_0^3 {x.f\left( x \right).
- Cho hàm số \(f(x)\) có đạo hàm liên tục trên \(\left[ {0;\frac{\pi }{2}} \right],\) thỏa mãn \(\int\limits_0^{\frac{\pi }{2}}
- Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\left[ {0;1} \right],\) thỏa mãn \(\int\limits_1^2 {f\left( {
- Cho hàm số \(f(x)\) nhận giá trị dương, có đạo hàm liên tục trên \(\left[ {0;2} \right].
- Cho biểu thức \(S = \ln \left( {1 + \int\limits_{\frac{n}{{4 + {m^2}}}}^{\frac{\pi }{2}} {\left( {2 - \sin 2x} \right){e^{2\cot x}}{\rm{d}}x} } \r
- Biết \(\int\limits_1^2 {\ln \left( {9 - {x^2}} \right){\rm{d}}x} = a\ln 5 + b\ln 2 + c\) với \(a,{\rm{ }}b,{\rm{ }}c \in Z.
- Biết \(\int\limits_0^1 {\frac{{\pi {x^3} + {2^x} + e{x^3}{2^x}}}{{\pi + e{{.2}^x}}}} {\rm{d}}x = \frac{1}{m} + \frac{1}{{e\ln n}}.
- Biết \(\int\limits_0^{\frac{\pi }{2}} {\frac{{{x^2} + \left( {2x + \cos x} \right)\cos x + 1 - \sin x}}{{x + \cos x}}{\rm{d}}x} = a{\pi ^2} +
- Biết \(\int\limits_{\ln \sqrt 3 }^{\ln \sqrt 8 } {\frac{1}{{\sqrt {{e^{2x}} + 1} - {e^x}}}{\rm{d}}x} = 1 + \frac{1}{2}\ln \frac{b}{a} +
- Biết \(\int\limits_1^2 {\frac{{{\rm{d}}x}}{{\left( {x + 1} \right)\sqrt x + x\sqrt {x + 1} }} = \sqrt a } - \sqrt b - c\) v�
- Biết \(\int\limits_0^{\frac{\pi }{4}} {\frac{{\sin 4x}}{{\sqrt {{{\cos }^2}x + 1} + \sqrt {{{\sin }^2}x + 1} }}{\rm{d}}x} = \frac{{a\sqr
- Biết \(\int\limits_1^4 {\sqrt {\frac{1}{{4x}} + \frac{{\sqrt x + {e^x}}}{{\sqrt x {e^{2x}}}}} {\rm{d}}x} = a + {e^b} - {e^c}\) vớ
- Biết \(\int\limits_0^2 {\sqrt {\frac{{2 + \sqrt x }}{{2 - \sqrt x }}} {\rm{d}}x} = a\pi + b\sqrt 2 + c\) với \(a,{\rm{ }}b,
- Biết \(I = \int\limits_1^e {\frac{{{{\ln }^2}x + \ln x}}{{{{\left( {\ln x + x + 1} \right)}^3}}}{\rm{d}}x} = \frac{1}{a} - \frac{b}{{{{\left(
- Biết \(\int\limits_{ - \frac{\pi }{6}}^{\frac{\pi }{6}} {\frac{{x\cos x}}{{\sqrt {1 + {x^2}} + x}}{\rm{d}}x} = a + \frac{{{\pi ^2}}}{b}
- Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}x + 1 & {\rm{khi}} & x \ge 0\\{e^{2x}} & {\rm{khi}} & x \le 0\end{arra
- Cho hàm số \(f(x)\) xác định trên \(R\backslash \left\{ {\frac{1}{2}} \right\},\) thỏa \(f\left( x \right) = \frac{2}{{2x - 1}},{\
- Cho hàm số \(f(x)\) xác định trên \(R{\rm{\backslash }}\left\{ { - 2;1} \right\},\) thỏa mãn \(f\left( x \right) = \frac{1}{{{x^2
- Cho hàm số \(f(x)\) xác định trên \(\left( {0; + \infty } \right){\rm{\backslash }}\left\{ e \right\},\) thỏa mãn \(f\left( x \ri
- Cho \(F(x)\) là một nguyên hàm của hàm số \(y = \frac{1}{{1 + \sin 2x}}\) với \(x \in R\backslash \left\{ { - \frac{\pi }{4} + k
- Cho hàm số \(f(x)\) là hàm số lẻ, liên tục trên \(\left[ { - \,4;\,4\,} \right].
- Cho hàm số \(f(x)\) là hàm số chẵn, liên tục trên \(\left[ { - 1;6} \right].
- Cho hàm số \(f(x)\) liên tục trên \(\left[ {3;7} \right],\) thỏa mãn \(f\left( x \right) = f\left( {10 - x} \right)\) với m
- Cho hàm số \(y=f(x)\) là hàm số chẵn và liên tục trên đoạn \(\left[ { - \pi ;\pi } \right],\) thỏa mãn \(\int\limits_0^\
- Biết \(\int\limits_0^\pi {\frac{{x{{\sin }^{2018}}x}}{{{{\sin }^{2018}}x + {{\cos }^{2018}}x}}{\rm{d}}x} = \frac{{{\pi ^a}}}{b}\) v