YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(y = a{x^2} + bx + c,{\mkern 1mu} {\mkern 1mu} a \ne 0,\) biết hàm số đạt giá trị lớn nhất trên \(\mathbb{R}\) bằng 4  khi \(x = {\rm{\;}} - 1\) và tổng bình phương các nghiệm của phương trình \(y = 0\) bằng 10. Hàm số đã cho là hàm số nào sau đây? 

    • A. \(y = {x^2} + 2x - 3\). 
    • B. \(y = {\rm{\;}} - 2{x^2} - 4x + 2\).  
    • C. \(y = {\rm{\;}} - {x^2} - 2x + 1\).   
    • D. \(y = {\rm{\;}} - {x^2} - 2x + 3\). 

    Lời giải tham khảo:

    Đáp án đúng: D

    Hàm số \(y = a{x^2} + bx + c,{\mkern 1mu} {\mkern 1mu} a \ne 0\) là hàm số bậc 2 nên có đỉnh \(I\left( {\frac{{ - b}}{{2a}};\frac{{ - \Delta }}{{4a}}} \right)\)

    Vì hàm số đạt giá trị lớn nhất trên \(\mathbb{R}\) bằng 4 khi \(x = {\rm{\;}} - 1\) nên đồ thị hàm số có đỉnh \(I\left( { - 1;4} \right)\) và \(a < 0.\)

    \( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\frac{{ - b}}{{2a}} = {\rm{\;}} - 1}\\{f\left( { - 1} \right) = 4}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b = 2a}\\{a - b + c = 4}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b = 2a}\\{a - 2a + c = 4}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b = 2a}\\{c = 4 + a}\end{array}} \right.\)

    Xét phương trình: \(y = 0\) \( \Leftrightarrow a{x^2} + bx + c = 0\) có hai nghiệm \({x_1};{\mkern 1mu} {\mkern 1mu} {x_2}\) \( \Leftrightarrow \Delta {\rm{\;}} > 0 \Leftrightarrow {b^2} - 4ac > 0.\)

    Áp dụng định lý Vi-et ta có: \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = {\rm{\;}} - \frac{b}{a}}\\{{x_1}{x_2} = \frac{c}{a}}\end{array}} \right..\)

    Theo đề bài ta có: \(x_1^2 + x_2^2 = 10 \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 10\)

    \(\begin{array}{*{20}{l}}{ \Leftrightarrow {{\left( { - \frac{b}{a}} \right)}^2} - \frac{{2c}}{a} = 10}\\{ \Leftrightarrow {{\left( { - \frac{{2a}}{a}} \right)}^2} - \frac{{2c}}{a} = 10}\\{ \Leftrightarrow 4a - 2c = 10a}\\{ \Leftrightarrow 6a + 2c = 0}\\{ \Leftrightarrow 6a + 2\left( {4 + a} \right) = 0}\\{ \Leftrightarrow 6a + 2a + 8 = 0}\\{ \Leftrightarrow a = {\rm{\;}} - 1{\mkern 1mu} {\mkern 1mu} \left( {tm} \right)}\\{ \Rightarrow \left\{ {\begin{array}{*{20}{l}}{b = {\rm{\;}} - 2}\\{c = 3}\end{array}} \right..}\\{ \Rightarrow y = {\rm{\;}} - {x^2} - 2x + 3.}\end{array}\)

    Chọn D.

    ATNETWORK

Mã câu hỏi: 423336

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON