YOMEDIA
NONE
  • Câu hỏi:

    Cho đoạn mạch nối tiếp gồm các phần tử như hình vẽ trong đó R = r = 50 Ω. Đặt điện áp xoay chiều có biểu thức u = U0cos(ωt) vào hai đầu đoạn mạch. Đồ thị biểu diễn điện áp ở hai đầu đoạn mạch AN và MB biểu diễn như hình vẽ. Dung kháng của tụ điện bằng

    • A. 50 Ω.
    • B. \(\dfrac{{50\sqrt 3 }}{3}\,\,\Omega \).
    • C. \(50\sqrt 3 \,\,\Omega \).
    • D. \(100\sqrt 3 \,\,\Omega \).

    Lời giải tham khảo:

    Đáp án đúng: B

    Đáp án : B

    Từ đồ thị ta thấy pha ban đầu của điện áp uAN và uMB là:

    \(\left\{ \begin{array}{l}{\varphi _{AN}} = {\varphi _1} = 0\\{\varphi _{MB}} = {\varphi _2} =  - \dfrac{\pi }{2}\end{array} \right. \Rightarrow \overrightarrow {{U_{AN}}}  \bot \overrightarrow {{U_{MB}}} \)

    Ta có: \(\tan {\varphi _1}.\tan {\varphi _2} =  - 1\)

    \( \Rightarrow \dfrac{{{Z_L}}}{{R + r}}.\dfrac{{ - {Z_C}}}{R} =  - 1 \Rightarrow {Z_L} = \dfrac{{R.\left( {R + r} \right)}}{{{Z_C}}} = \dfrac{{5000}}{{{Z_C}}}\)

    Lại có: \(\dfrac{{{U_{0AN}}}}{{{U_{0MB}}}} = \dfrac{{{Z_{AN}}}}{{{Z_{MB}}}}\)

    \(\begin{array}{l} \Rightarrow \dfrac{{300}}{{50\sqrt 3 }} = \dfrac{{\sqrt {{{\left( {R + r} \right)}^2} + {Z_L}^2} }}{{\sqrt {{R^2} + {Z_C}^2} }} = \dfrac{{\sqrt {{{100}^2} + {Z_L}^2} }}{{\sqrt {{{50}^2} + {Z_C}^2} }}\\ \Rightarrow \dfrac{{{{100}^2} + {Z_L}^2}}{{{{50}^2} + {Z_C}^2}} = \dfrac{{{{300}^2}}}{{{{\left( {50\sqrt 3 } \right)}^2}}} = 12\\ \Rightarrow 12{Z_C}^2 - {Z_L}^2 + 20000 = 0\\ \Rightarrow 12{Z_C}^2 - \dfrac{{{{5000}^2}}}{{{Z_C}^2}} + 20000 = 0\\ \Rightarrow {Z_C}^2 = \dfrac{{2500}}{3} \Rightarrow {Z_C} = \dfrac{{50}}{{\sqrt 3 }} = \dfrac{{50\sqrt 3 }}{3}\,\,\left( \Omega  \right)\end{array}\)

    ATNETWORK

Mã câu hỏi: 465252

Loại bài: Bài tập

Chủ đề :

Môn học: Vật lý

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON