YOMEDIA
NONE
  • Câu hỏi:

    Cho dãy số \(\left( {{u_n}} \right)\) được xác định bởi: \({u_1} = \sin 1\,;\,\,\,{u_n} = {u_{n - 1}} + \frac{{\sin n}}{{{n^2}}}\), với \(\forall n \in N,\,\,n \ge 2\).

    Chứng minh rằng dãy số \(\left( {{u_n}} \right)\) xác định như trên là một dãy số bị chặn.

    Lời giải tham khảo:

    Ta có: \(\frac{1}{{{1^2}}} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{n^2}}} < 2,\forall n \in {N^*}\), vì

    \(\begin{array}{*{20}{l}}
    {\frac{1}{{{1^2}}} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{n^2}}} < 1 + \frac{1}{{1.2}} + \frac{1}{{2.3}} + ... + \frac{1}{{n.(n - 1)}} = }\\
    { = 1 + 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + ... + \frac{1}{{n - 1}} - \frac{1}{n} = 2 - \frac{1}{n} < 2}
    \end{array}\)

    Bằng qui nạp ta CM được: \({u_n} = \frac{{\sin 1}}{{{1^2}}} + \frac{{\sin 2}}{{{2^2}}} + ... + \frac{{\sin n}}{{{n^2}}}\) 

    Suy ra : \( - 2 <  - \left( {\frac{1}{{{1^2}}} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{n^2}}}} \right) \le {u_n} \le \frac{1}{{{1^2}}} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{n^2}}} < 2,\forall n \in {N^*}\)

    Vậy dãy số \(\left( {{u_n}} \right)\) xác định như trên là một dãy số bị chặn.

    ADSENSE

Mã câu hỏi: 111108

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
AANETWORK
OFF