-
Câu hỏi:
Có bao nhiêu giá trị của x thỏa mãn \(\sqrt {2x + 3} = 25\)
- A. 0
- B. 1
- C. 114
- D. 311
Lời giải tham khảo:
Đáp án đúng: D
Ta có \(\sqrt {2x + 3} = 25 \Rightarrow 2x + 3 = {25^2} \Rightarrow 2x + 3 = 625\)
\(\Rightarrow 2x = 625 - 3 \Rightarrow 2x = 622 \Rightarrow x = 311\)
Vậy có một giá trị của
thỏa mãn là x = 311.Đáp án cần chọn là: D
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Giá trị nào sau đây của x thỏa mãn \(0,(26).x = 1,2(31)\)
- Trong các phân số cho sau \(\frac{2}{7};\frac{2}{{45}};\frac{{ - 5}}{{ - 240}};\frac{{ - 7}}{{18}}\). Có bao nhiêu phân số được viết dưới dạng số thập phân vô hạn tuần hoàn.
- Cho biết có bao nhiêu giá trị của x thỏa mãn \(\sqrt {2x + 3} = 25\)
- Tìm giá trị x, biết: \({2 \over 3} - \left( {{3 \over 4} + x} \right) = \sqrt {{1 \over 9}}\)
- Cho x biết rằng \(\sqrt x = 3\). Tính \(x^3\).
- Kết quả của phép tính sau \( \left( {\sqrt {\frac{9}{{25}}} - 2.9} \right):\left( {\frac{4}{5} + 0,2} \right)\)
- Hãy sắp xếp các số sau theo thứ tự tăng dần: \(\frac{{ - 1}}{2};0,5;\frac{{ - 3}}{4}; - \sqrt 2 - \frac{3}{4};\frac{4}{5}\)
- Hãy tìm giá trị của x biết rằng: \(4,3:x + \left( { - 1,3} \right).x + 1,6 = 8,2\)
- Gọi x là giá trị thỏa mãn sau \( \sqrt {1,69} .\left( {2\sqrt x + \sqrt {\frac{{81}}{{121}}} } \right) = \frac{{13}}{{10}}\) .
- Thực hiện tính: \(\left ( \dfrac{9}{25} -2. 18\right ):\left ( 3\dfrac{4}{5} +0,2\right )\)