YOMEDIA
NONE
  • Câu hỏi:

    Bất phương trình \(\frac{{2{x^2} - x - 1}}{{\left| {x + 1} \right| - 2x}} \le - 2{x^2} + x + 1\) 

    có bao nhiêu nghiệm nguyên?

    • A. 1
    • B. 2
    • C. 3
    • D. Nhiều hơn 3 nhưng hữu hạn.

    Lời giải tham khảo:

    Đáp án đúng: B

    \(\begin{array}{l}
    \frac{{2{x^2} - x - 1}}{{\left| {x + 1} \right| - 2x}} \le  - 2{x^2} + x + 1\\
     \Leftrightarrow \left[ \begin{array}{l}
    \frac{{2{x^2} - x - 1}}{{x + 1 - 2x}} \le  - 2{x^2} + x + 1\\
    \frac{{2{x^2} - x - 1}}{{ - \left( {x + 1} \right) - 2x}} \le  - 2{x^2} + x + 1
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    2{x^2} + x \le 0\\
    \frac{{3x\left( {2{x^2} - x - 1} \right)}}{{ - 3x - 1}} \ge 0
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
     - \frac{1}{2} \le x \le 0\\
     - \frac{1}{3} < x \le \frac{{ - 1}}{2} \vee 0 \le x \le 1
    \end{array} \right.
    \end{array}\)

    Do \(x \in Z \Rightarrow x = 0,x = 1\)

    Vậy có 2 nghiệm nguyên.

    ATNETWORK

Mã câu hỏi: 43044

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON