Nhằm nâng cao kiến thức toán THCS cũng như chuẩn bị cho kì thi học kì, các kì thi HSG. HỌC247 xin giới thiệu đến các em Bài tập về ƯCLN và BCNN. Chúc các em học tập thật tốt và đạt kết quả cao trong các kì thi sắp tới.
MỘT DẠNG TOÁN VỀ ƯCLN VÀ BCNN
Trong chương trình số học lớp 6, sau khi học các khái niệm ước chung lớn nhất (ƯCLN) và bội chung nhỏ nhất (BCNN), các bạn sẽ gặp dạng toán tìm hai số nguyên dương khi biết một số yếu tố trong đó có các dữ kiện về ƯCLN và BCNN.
Phương pháp chung để giải:
1/ Dựa vào định nghĩa ƯCLN để biểu diễn hai số phải tìm, liên hệ với các yếu tố đã cho để tìm hai số.
2/ Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này không khó :
Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md; b = nd với m, n thuộc Z+; (m, n) = 1 (*)
Từ (*) => ab = mnd2; [a, b] = mnd
=> (a, b).[a, b] = d.(mnd) = mnd2 = ab
=> ab = (a, b).[a, b] . (**)
Chúng ta hãy xét một số ví dụ minh họa.
Bài toán 1: Tìm hai số nguyên dương a, b biết [a, b] = 240 và (a, b) = 16.
Lời giải: Do vai trò của a, b là như nhau, không mất tính tổng quát, giả sử a ≤ b.
Từ (*), do (a, b) = 16 nên a = 16m; b = 16n (m ≤ n do a ≤ b) với m, n thuộc Z+; (m, n) = 1.
Theo định nghĩa BCNN:
[a, b] = mnd = mn.16 = 240 => mn = 15
=> m = 1 , n = 15 hoặc m = 3, n = 5 => a = 16, b = 240 hoặc a = 48, b = 80.
Chú ý: Ta có thể áp dụng công thức (**) để giải bài toán này: ab = (a, b).[a, b] => mn.162 = 240.16 suyy ra mn = 15.
Bài toán 2: Tìm hai số nguyên dương a, b biết ab = 216 và (a, b) = 6.
Trên đây chỉ trích một phần nội dung của Bài tập về ƯCLN và BCNN. Để xem toàn bộ nội dung bài học các em có thể xem online hoặc đăng nhập vào trang HOC247.net để tải về máy tính. Hi vọng tài liệu này giúp các em ôn tập và đạt thành tích cao trong kì thi sắp tới. Chúc các em học tốt!
Tư liệu nổi bật tuần
- Xem thêm