Câu hỏi trắc nghiệm (10 câu):
-
Câu 1: Mã câu hỏi: 387008
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm các cạnh AB, AC, BC. Hỏi \(\overrightarrow {MP} + \overrightarrow {NP} \) bằng vec tơ nào?
- A. \(\overrightarrow {AM} \)
- B. \(\overrightarrow {PB} \)
- C. \(\overrightarrow {AP} \)
- D. \(\overrightarrow {MN} \)
-
Câu 2: Mã câu hỏi: 387009
Cho tam giác ABC vuông cân tại A có AB = a. Tính \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right|\)
- A. \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = a\sqrt 2 \)
- B. \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = \frac{{a\sqrt 2 }}{2}\)
- C. \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = 2a\)
- D. \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = a\)
-
Câu 3: Mã câu hỏi: 387010
Cho tam giác ABC vuông tại A và có AB = 3, AC = 4. Tính \(\left| {\overrightarrow {CA} + \overrightarrow {AB} } \right|\)
- A. \(\left| {\overrightarrow {CA} + \overrightarrow {AB} } \right| = 2\)
- B. \(\left| {\overrightarrow {CA} + \overrightarrow {AB} } \right| = 2\sqrt {13} \)
- C. \(\left| {\overrightarrow {CA} + \overrightarrow {AB} } \right| = 5\)
- D. \(\left| {\overrightarrow {CA} + \overrightarrow {AB} } \right| = \sqrt {13} \)
-
Câu 4: Mã câu hỏi: 387011
Cho hình vuông ABCD cạnh a, tâm O. Tính \(\left| {\overrightarrow {OB} + \overrightarrow {OC} } \right|\)
- A. \(\left| {\overrightarrow {OB} + \overrightarrow {OC} } \right| = a\)
- B. \(\left| {\overrightarrow {OB} + \overrightarrow {OC} } \right| = a\sqrt 2 \)
- C. \(\left| {\overrightarrow {OB} + \overrightarrow {OC} } \right| = \frac{a}{2}\)
- D. \(\left| {\overrightarrow {OB} + \overrightarrow {OC} } \right| = \frac{{a\sqrt 2 }}{2}\)
-
Câu 5: Mã câu hỏi: 387012
Cho lục giác đều ABCDEF và O là tâm của nó. Đẳng thức nào dưới đây là đẳng thức sai?
- A. \(\overrightarrow {OA} + \overrightarrow {OC} + \overrightarrow {OE} = \vec 0\)
- B. \(\overrightarrow {BC} + \overrightarrow {FE} = \overrightarrow {AD} \)
- C. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {EB} \)
- D. \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {FE} = \vec 0\)
-
Câu 6: Mã câu hỏi: 387013
Cho hình vuông ABCD cạnh a, tâm O. Khi đó: \(\left| {\overrightarrow {OA} - \overrightarrow {BO} } \right| = \)
- A. \(a\)
- B. \(\sqrt 2 a\)
- C. \(\frac{a}{2}\)
- D. \(2a\)
-
Câu 7: Mã câu hỏi: 387014
Cho các điểm phân biệt A, B, C, D, E, F. Đẳng thức nào sau đây sai?
- A. \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AF} + \overrightarrow {ED} + \overrightarrow {BC} \)
- B. \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AF} + \overrightarrow {ED} + \overrightarrow {CB} \)
- C. \(\overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {DC} = \overrightarrow {DF} + \overrightarrow {BE} + \overrightarrow {AC} \)
- D. \(\overrightarrow {AC} + \overrightarrow {BD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {BF} + \overrightarrow {EC} \)
-
Câu 8: Mã câu hỏi: 387015
Gọi G là trọng tâm tam giác vuông ABC với cạnh huyền BC = 12. Vec tơ \(\overrightarrow {GB} - \overrightarrow {CG} \) có độ dài bằng bao nhiêu?
- A. 2
- B. 4
- C. 8
- D. \(2\sqrt 3 \)
-
Câu 9: Mã câu hỏi: 387016
Gọi O là tâm của hình vuông ABCD. Vec tơ nào trong các vec tơ dưới đây bằng \(\overrightarrow {CA} \) ?
- A. \(\overrightarrow {BC} + \overrightarrow {AB} \)
- B. \( - \overrightarrow {OA} + \overrightarrow {OC} \)
- C. \(\overrightarrow {BA} + \overrightarrow {DA} \)
- D. \(\overrightarrow {DC} - \overrightarrow {CB} \)
-
Câu 10: Mã câu hỏi: 387017
Cho hình chữ nhật ABCD. Khẳng định nào sau đây đúng?
- A. \(\overrightarrow {AC} = \overrightarrow {BD} \)
- B. \(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} = \vec 0\)
- C. \(\left| {\overrightarrow {AB} - \overrightarrow {AD} } \right| = \left| {\overrightarrow {AB} + \overrightarrow {AD} } \right|\)
- D. \(\left| {\overrightarrow {BC} + \overrightarrow {BD} } \right| = \left| {\overrightarrow {AC} - \overrightarrow {AB} } \right|\)