YOMEDIA
NONE

Bài tập 5 trang 83 SBT Toán 8 Tập 2

Giải bài 5 tr 83 sách BT Toán lớp 8 Tập 2

Cho tam giác ABC. Từ điểm D trên cạnh BC, kẻ các đường thẳng song song với các cạnh AB và AC, chúng cắt các cạnh AC và AB theo thứ tự tại F và E (hình dưới)

Chứng minh rằng :

\({{AE} \over {AB}} + {{AF} \over {AC}} = 1\)

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Sử dụng định lí Ta - lét: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh ấy những đoạn thẳng tương ứng tỉ lệ.

Lời giải chi tiết

Xét \(∆ ABC\) có \(DE // AC\) (gt)

Theo định lí Ta-lét ta có:

\(\displaystyle {{AE} \over {AB}} = {{CD} \over {CB}}\)  (1)

Lại có: \(DF // AB\) (gt)

Theo định lí Ta-lét ta có:

\(\displaystyle{{AF} \over {AC}} = {{BD} \over {BC}}\)  (2)

Cộng  (1) và (2) theo vế với vế, ta có:

\(\displaystyle {{AE} \over {AB}} + {{AF} \over {AC}} = {{CD} \over {CB}} + {{BD} \over {BC}} \)

\(\displaystyle \Rightarrow {{AE} \over {AB}} + {{AF} \over {AC}}  = {{CD + BD} \over {BC}} \)

\(\displaystyle \Rightarrow {{AE} \over {AB}} + {{AF} \over {AC}}  = {{BC} \over {BC}} = 1\

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 5 trang 83 SBT Toán 8 Tập 2 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON