YOMEDIA
NONE

Bài tập 1.2 trang 83 SBT Toán 8 Tập 2

Giải bài 1.2 tr 83 sách BT Toán lớp 8 Tập 2

Tam giác ABC vuông tại A có đường cao là AD (D ∈ BC). Từ D, kẻ DE vuông góc với AB (E ∈ AB) và DF vuông góc với AC (F ∈ AC).

Hỏi rằng, khi độ dài các cạnh AB, AC thay đổi thì tổng \({{AE} \over {AB}} + {{AF} \over {AC}}\) có thay đổi hay không ? Vì sao?.

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Sử dụng:

- Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau.

- Định lí Ta-lét: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh ấy những đoạn thẳng tương ứng tỉ lệ.

Lời giải chi tiết

Vì \(DE\) và \(CA\) cùng vuông góc với \(AB\) nên \(DE // AC\).

Xét \(\Delta ABC\) có \(DE//AC\)

Theo định lí Ta-lét, ta có:

\(\displaystyle {{AE} \over {AB}} = {{CD} \over {CB}}\)       (1)

Vì \(DF\) và \(BA\) cùng vuông góc với \(AC\) nên \(DF//AB\).

Xét \(\Delta ABC\) có \(DF//AB\)

Theo định lí Ta-lét, ta có:

\(\displaystyle {{AF} \over {AC}} = {{BD} \over {BC}}\)       (2)

Cộng (1) và (2) theo vế với vế, ta có:

\(\displaystyle {{AE} \over {AB}} + {{AF} \over {AC}} = {{CD} \over {CB}} + {{BD} \over {BC}}\)

\(\displaystyle \Rightarrow {{AE} \over {AB}} + {{AF} \over {AC}}= {{CD + BD} \over {BC}}\)

\(\displaystyle \Rightarrow {{AE} \over {AB}} + {{AF} \over {AC}} = {{BC} \over {BC}} = 1\)

Tổng \(\displaystyle {{AE} \over {AB}} + {{AF} \over {AC}}\) không thay đổi vì luôn có giá trị bằng \(1.\)

Vậy khi độ dài cạnh góc vuông \(AB, AC\) của tam giác vuông \(ABC\) thay đổi thì tổng \(\displaystyle {{AE} \over {AB}} + {{AF} \over {AC}}\) luôn luôn không thay đổi. Tổng đó luôn có giá trị bằng \(1.\)

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 1.2 trang 83 SBT Toán 8 Tập 2 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON