YOMEDIA
NONE

Giải bài 23 trang 73 SBT Toán 7 Cánh diều tập 2 - CD

Giải bài 23 trang 73 SBT Toán 7 Cánh diều tập 2

Cho ∆ABC = ∆GIK có số đo \(\widehat G,\widehat I,\widehat K\) tỉ lệ với 2; 3; 4. Tính số đo mỗi góc của tam giác ABC.

ATNETWORK

Hướng dẫn giải chi tiết bài 23

Phương pháp giải

Áp dụng tính chất dãy tỉ số bằng nhau để tính số đo góc của tam giác GIK và từ hai tam giác ∆ABC = ∆GIK để suy ra số đo các góc của tam giác ABC.

Lời giải chi tiết

Vì số đo \(\widehat G,\widehat I,\widehat K\) tỉ lệ với 2; 3; 4 nên ta có: \(\frac{{\widehat G}}{2} = \frac{{\widehat I}}{3} = \frac{{\widehat K}}{4}\)

 Xét DGIK có \(\widehat G + \widehat I + \widehat K = {180^o}\) (tổng ba góc của một tam giác).

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{{\widehat G}}{2} = \frac{{\widehat I}}{3} = \frac{{\widehat K}}{4} = \frac{{\widehat G + \widehat I + \widehat K}}{9} = \frac{{180^\circ }}{9} = 20^\circ \)

Suy ra

\(\widehat G = 2.20^\circ  = 40^\circ ;\)

 \(\widehat I = 3.20^\circ  = 60^\circ ;\)

\(\widehat K = 4.20^\circ  = 80^\circ .\).

Do ∆ABC = ∆GIK nên \(\widehat {{A^{}}} = \widehat G,\widehat B = \widehat I,\widehat C = \widehat K\) (các cặp góc tương ứng).

Mà \(\hat G = 40^\circ ,\hat I = 60^\circ ,\hat K = 80^\circ \)

Suy ra \(\hat A = 40^\circ ,\hat B = 60^\circ ,\hat C = 80^\circ .\)

Vậy \(\hat A = 40^\circ ,\hat B = 60^\circ ,\hat C = 80^\circ .\) 

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 23 trang 73 SBT Toán 7 Cánh diều tập 2 - CD HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON