Bài kiểm tra Trắc nghiệm Chương 1 Đại số và Giải tích 11 sẽ giúp các em rèn luyện kĩ năng giải các bài toán liên quan đến hàm số lượng giác và phương trình lượng giác. Đồng thời, thông qua kết quả làm bài các em sẽ đánh giá được mức độ hiểu bài, để có kế hoạch học tập hợp lý.
Câu hỏi trắc nghiệm (10 câu):
-
- A. \(y = \frac{1}{2}\sin x.\cos 2x\)
- B. \(y = 2\cos 2x\)
- C. \(y = \frac{x}{{\sin x}}\)
- D. \(y = 1 + \tan x\)
-
Câu 2:
Tìm các nghiệm của phương trình \(2\sin 2x - \sqrt 3 = 0\) trong đoạn \(\left[ {0;2\pi } \right].\)
- A. \(S = \left\{ {\frac{\pi }{6};\frac{\pi }{3};\frac{{2\pi }}{3};\frac{{5\pi }}{6}} \right\}\)
- B. \(S = \left\{ {\frac{\pi }{6};\frac{\pi }{3};\frac{{7\pi }}{6};\frac{{4\pi }}{3}} \right\}\)
- C. \(S = \left\{ {\frac{\pi }{6};\frac{{5\pi }}{6};\frac{{7\pi }}{6}} \right\}\)
- D. \(S = \left\{ {\frac{\pi }{3};\frac{{4\pi }}{3};\frac{{5\pi }}{3}} \right\}\)
-
Câu 3:
Cho phương trình \(\frac{{\cos x + \sqrt 2 }}{{\tan x}} = 0\,(*).\) Khẳng định nào sau đây là đúng?
- A. Điều kiện xác định của phương trình (*) là \(x \ne k\frac{\pi }{2}.\)
- B. Điều kiện xác định của phương trình (*) là \(\sin x \ne 0.\)
- C. Nghiệm của phương trình (*) là \(x = \pm \frac{\pi }{4} + k2\pi .\)
- D. Phương trình (*) vô nghiệm.
-
- A. \(m \in \left[ { - 5; - 1} \right]\)
- B. \(m \in \left[ { - 5; - 2} \right]\)
- C. \(m \in \left[ { - 5;0} \right]\)
- D. \(m \in \left[ { - 5; - 3} \right]\)
-
- A. \(x = \frac{\pi }{2} + k\pi ,x = \frac{\pi }{6} + k\pi ,k \in \mathbb{Z}\)
- B. \(x = \frac{\pi }{2} + k2\pi ,x = \frac{\pi }{6} + k2\pi ,k \in \mathbb{Z}\)
- C. \(x = \frac{\pi }{3} + k\pi \)
- D. Một kết quả khác.
-
- A. \(x = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}.\)
- B. \(x = k\pi ,k \in \mathbb{Z}.\)
- C. \(x = \arctan \frac{1}{2} + k\pi ,k \in \mathbb{Z}.\)
- D. Một kết quả khác.
-
- A. \(x = k2\pi ,k \in \mathbb{Z}.\)
- B. \(x = k\pi ,k \in \mathbb{Z}.\)
- C. \(x = \frac{{k\pi }}{2},k \in \mathbb{Z}.\)
- D. \(x = \pi + k2\pi ,k \in \mathbb{Z}.\)
-
- A. \(x = {120^0} + k{720^0}\) hay \(x = {30^0} + k{720^0},k \in \mathbb{Z}.\)
- B. \(x = {120^0} + k{360^0}\) hay \(x = {30^0} + k{360^0},k \in \mathbb{Z}.\)
- C. \(x = {60^0} + k{360^0}\) hay \(x = {30^0} + k{360^0},k \in \mathbb{Z}.\)
- D. Một kết quả khác.
-
- A. \(x = k2\pi \) hay \(x = \frac{\pi }{4} + k\pi ,k \in \mathbb{Z}\)
- B. \(x = \frac{{k\pi }}{3}\) hay \(x = \frac{\pi }{4} + k\pi ,k \in \mathbb{Z}\)
- C. . \(x = \frac{{k2\pi }}{3}\) hay \(x = - \frac{\pi }{4} + k\pi ,k \in \mathbb{Z}\)
- D. Một kết quả khác.
-
- A. \(x = \frac{\pi }{6} + k\pi ,k \in \mathbb{Z}.\)
- B. \(x = \frac{\pi }{2} + k\pi \) hay \(x = \frac{\pi }{6} + k\pi ,k \in \mathbb{Z}.\)
- C. \(x = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}.\)
- D. Một kết quả khác.