YOMEDIA
NONE

Thực hành 1 trang 55 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Thực hành 1 trang 55 SGK Toán 11 Chân trời sáng tạo tập 2

Cho hình hộp \(ABCD.A'B'C'D'\) có 6 mặt đều là hình vuông \(M,N,E,F\) lần lượt là trung điểm các cạnh \(BC,BA,AA',A'D'\). Tính góc giữa các cặp đường thẳng:

a) \(MN\) và \(DD'\);

b) \(MN\) và \(CD'\);

c) \(EF\) và \(CC'\).

ATNETWORK

Hướng dẫn giải chi tiết Thực hành 1

Phương pháp giải:

Cách xác định góc giữa hai đường thẳng \(a\) và \(b\):

Bước 1: Lấy một điểm \(O\) bất kì.

Bước 2: Qua điểm \(O\) dựng đường thẳng \(a'\parallel a\) và đường thẳng \(b'\parallel b\).

Bước 3: Tính \(\left( {a,b} \right) = \left( {a',b'} \right)\).

Lời giải chi tiết:

a) Ta có: \(M\) là trung điểm của \(BC\)

\(N\) là trung điểm của \(AB\)

\( \Rightarrow MN\) là đường trung bình của tam giác \(ABC\)

\( \Rightarrow MN\parallel AC\)

Mà \(DD'\parallel AA'\)

\( \Rightarrow \left( {MN,DD'} \right) = \left( {AC,AA'} \right) = \widehat {A'AC} = {90^ \circ }\).

 

b) Ta có: \(MN\parallel AC\)

\( \Rightarrow \left( {MN,CD'} \right) = \left( {AC,C{\rm{D}}'} \right) = \widehat {AC{\rm{D}}'}\)

Vì \(ABC{\rm{D}},ADD'A',C{\rm{DD}}'{\rm{C}}'\) là các hình vuông bằng nhau nên các đường chéo của chúng bằng nhau. Vậy \(AC = A{\rm{D}}' = C{\rm{D}}'\)

\( \Rightarrow \Delta AC{\rm{D}}'\) là tam giác đều \( \Rightarrow \widehat {AC{\rm{D}}'} = {60^ \circ }\).

Vậy \(\left( {MN,CD'} \right) = {60^ \circ }\).

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Thực hành 1 trang 55 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON