Giải Bài 4 trang 56 SGK Toán 11 Chân trời sáng tạo tập 2
Cho tứ diện đều \(ABCD\) cạnh \(a\). Gọi \(K\) là trung điểm của \(CD\). Tính góc giữa hai đường thẳng \(AK\) và \(BC\).
Hướng dẫn giải chi tiết Bài 4
Phương pháp giải
Cách xác định góc giữa hai đường thẳng \(a\) và \(b\):
Bước 1: Lấy một điểm \(O\) bất kì.
Bước 2: Qua điểm \(O\) dựng đường thẳng \(a'\parallel a\) và đường thẳng \(b'\parallel b\).
Bước 3: Tính \(\left( {a,b} \right) = \left( {a',b'} \right)\).
Lời giải chi tiết
Gọi \(I\) là trung điểm của \(B{\rm{D}}\).
Ta có: \(I\) là trung điểm của \(B{\rm{D}}\)
\(K\) là trung điểm của \(CD\)
\( \Rightarrow IK\) là đường trung bình của tam giác \(BCD\)
\( \Rightarrow IK\parallel BC \Rightarrow \left( {AK,BC} \right) = \left( {AK,IK} \right) = \widehat {AKI}\)
\(IK = \frac{1}{2}BC = \frac{a}{2}\)
\(AI\) là trung tuyến của tam giác \(AB{\rm{D}}\)\( \Rightarrow AI = \frac{{\sqrt {2\left( {A{B^2} + A{{\rm{D}}^2}} \right) - B{{\rm{D}}^2}} }}{2} = \frac{{a\sqrt 3 }}{2}\)
\(AK\) là trung tuyến của tam giác \(AC{\rm{D}}\)\( \Rightarrow AK = \frac{{\sqrt {2\left( {A{C^2} + A{{\rm{D}}^2}} \right) - C{{\rm{D}}^2}} }}{2} = \frac{{a\sqrt 3 }}{2}\)
Xét tam giác \(AIK\) có:
\(\cos \widehat {AKI} = \frac{{A{K^2} + I{K^2} - A{I^2}}}{{2.AK.IK}} = \frac{{\sqrt 3 }}{6} \Rightarrow \widehat {AKI} \approx {73^ \circ }13'\)
Vậy \(\left( {AK,BC} \right) \approx {73^ \circ }13'\).
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải Bài 2 trang 56 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 3 trang 56 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 5 trang 56 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 6 trang 56 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Bài tập 1 trang 50 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST
Bài tập 2 trang 51 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST
Bài tập 3 trang 51 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST
Bài tập 4 trang 51 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST
Bài tập 5 trang 44 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST