YOMEDIA
NONE

Giải Bài 4 trang 85 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 4 trang 85 SGK Toán 11 Chân trời sáng tạo tập 2

Một con dốc có dạng hình lăng trụ đứng tam giác với kích thước như trong Hình 9.

a) Tính số đo góc giữa đường thẳng \(CA'\) và .

b) Tính số đo góc nhị diện cạnh \(CC'\).

ATNETWORK

Hướng dẫn giải chi tiết Bài 4

Phương pháp giải

‒ Cách tính góc giữa đường thẳng và mặt phẳng: Tính góc giữa đường thẳng đó và hình chiếu của nó lên mặt phẳng.

‒ Cách xác định góc nhị diện \(\left[ {{P_1},d,{Q_1}} \right]\)

Bước 1: Xác định \(c = \left( {{P_1}} \right) \cap \left( {{Q_1}} \right)\).

Bước 2: Tìm mặt phẳng \(\left( R \right) \supset c\).

Bước 3: Tìm \(p = \left( R \right) \cap \left( {{P_1}} \right),q = \left( R \right) \cap \left( {{Q_1}} \right),O = p \cap q,M \in p,N \in q\).

Khi đó \(\left[ {{P_1},d,{Q_1}} \right] = \widehat {MON}\).

 

Lời giải chi tiết

 

a) Ta có:

\(\left. \begin{array}{l}BB' \bot \left( {A'B'C'} \right) \Rightarrow BB' \bot A'B'\\A'B' \bot B'C'\end{array} \right\} \Rightarrow A'B' \bot \left( {CC'B'B} \right)\\ \Rightarrow \left( {CA',\left( {CC'B'B} \right)} \right) = \left( {CA',CB'} \right) = \widehat {A'CB'}\\B'C = \sqrt {BB{^2} + B{C^2}} = 2\sqrt {61} ,A'B' = AB = 4\\\tan \widehat {A'CB'} = \frac{{A'B'}}{{B'C}} = \frac{2}{{\sqrt {61} }} \Rightarrow \widehat {A'CB'} \approx 14,{4^ \circ }\)

Vậy \(\left( {CA',\left( {CC'B'B} \right)} \right) \approx 14,{4^ \circ }\)

 

b) \(CC' \bot \left( {ABC} \right) \Rightarrow CC' \bot AC,CC' \bot BC\)

Vậy \(\widehat {ACB}\) là góc nhị diện cạnh \(CC'\).

\(\tan \widehat {ACB} = \frac{{AB}}{{AC}} = \frac{1}{3} \Rightarrow \widehat {ACB} \approx 18,{4^ \circ }\)

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Giải Bài 4 trang 85 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
NONE
ON