YOMEDIA
NONE

Bài tập 1 trang 68 SBT Toán 11 Tập 1 Cánh diều - CD

Bài tập 1 trang 68 SBT Toán 11 Tập 1 Cánh diều

Phát biểu nào sau đây là SAI?

A. \(\lim \frac{1}{{{2^n}}} = 0\)

B. \(\lim {\left( {\frac{3}{2}} \right)^n} = 0\)

C. \(\lim \frac{1}{{{{\left( {\sqrt 2 } \right)}^n}}} = 0\)

D. \(\lim {\left( { - \frac{{\sqrt 3 }}{2}} \right)^n} = 0\)

ATNETWORK

Hướng dẫn giải chi tiết Bài tập 1

Ta có: \(\left| {\frac{1}{2}} \right| < 1\) nên \(\lim \frac{1}{{{2^n}}} = \lim {\left( {\frac{1}{2}} \right)^n} = 0\).

          \(\left| {\frac{1}{{\sqrt 2 }}} \right| < 1\) nên \(\lim \frac{1}{{{{\left( {\sqrt 2 } \right)}^n}}} = \lim {\left( {\frac{1}{{\sqrt 2 }}} \right)^n} = 0\).

          \(\left| { - \frac{{\sqrt 3 }}{2}} \right| < 1\) nên \(\lim {\left( { - \frac{{\sqrt 3 }}{2}} \right)^n} = 0\).

          \(\left| {\frac{3}{2}} \right| > 1\) nên \(\lim {\left( {\frac{3}{2}} \right)^n} = + \infty \).

Đáp án đúng là B.

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 1 trang 68 SBT Toán 11 Tập 1 Cánh diều - CD HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON