Bài tập 6.31 trang 19 SBT Toán 11 Tập 2 Kết nối tri thức
Giải các phương trình mũ sau:
a) \({4^{2x - 1}} = {8^{x + 3}}\);
b) \({9^{2x}} \cdot {27^{{x^2}}} = \frac{1}{3}\)
c) \({\left( {{e^4}} \right)^x} \cdot {e^{{x^2}}} = {e^{12}}\)
d) \({5^{2x - 1}} = 20\).
Hướng dẫn giải chi tiết Bài 6.31
a) Ta có: \({4^{2x - 1}} = {8^{x + 3}} \Leftrightarrow {2^{4x - 2}} = {2^{3x + 9}} \Leftrightarrow 4x - 2 = 3x + 9 \Leftrightarrow x = 11\)
b) Ta có: \({9^{2x}} \cdot {27^{{x^2}}} = \frac{1}{3} \Leftrightarrow {3^{4x}} \cdot {3^{3{x^2}}} = {3^{ - 1}} \Leftrightarrow {3^{3{x^2} + 4x + 1}} = 1\)
\( \Leftrightarrow 3{x^2} + 4x + 1 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - \frac{1}{3}}\\{x = - 1}\end{array}} \right.\)
c) Ta có: \({\left( {{e^4}} \right)^x} \cdot {e^{{x^2}}} = {e^{12}} \Leftrightarrow {e^{4x}} \cdot {e^{{x^2}}} = {e^{12}} \Leftrightarrow {e^{{x^2} + 4x - 12}} = 1\)
\( \Leftrightarrow {x^2} + 4x - 12 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 2}\\{x = - 6.}\end{array}} \right.\)
d) Ta có: \({5^{2x - 1}} = 20 \Leftrightarrow 2x - 1 = {\rm{lo}}{{\rm{g}}_5}20 \Leftrightarrow x = \frac{1}{2}\left( {1 + {\rm{lo}}{{\rm{g}}_5}20} \right)\)
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải Bài 6.25 trang 24 SGK Toán 11 Kết nối tri thức tập 2 - KNTT
Giải Bài 6.26 trang 24 SGK Toán 11 Kết nối tri thức tập 2 - KNTT
Bài tập 6.32 trang 19 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.33 trang 19 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.34 trang 19 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.35 trang 19 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.36 trang 19 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.37 trang 19 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.38 trang 20 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.39 trang 20 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.40 trang 20 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT