YOMEDIA
NONE

Bài tập 6.28 trang 15 SBT Toán 15 Tập 2 Kết nối tri thức - KNTT

Bài tập 6.28 trang 15 SBT Toán 15 Tập 2 Kết nối tri thức

Số tiền ban đầu 120 triệu đồng được gửi tiết kiệm với lãi suất năm không đổi là \(6{\rm{\% }}\). Tính số tiền (cả vốn lẫn lãi) thu được sau 5 năm nếu nó được tính lãi kép:

a) hằng quý;

b) hằng tháng;

c) liên tục.

(Kết quả được tính theo đơn vị triệu đồng và làm tròn đến chữ số thập phân thứ ba).

ATNETWORK

Hướng dẫn giải chi tiết Bài 6.28

Để giải câu a và câu \({\rm{b}}\), ta sử dụng công thức lãi kép theo định kì để tính tổng số tiền thu được \(A = P{\left( {1 + \frac{r}{n}} \right)^t}\); trong đó \(P\) là số tiền vốn ban đầu, \(r\) là lãi suất năm ( \(r\) cho dưới dạng số thập phân), \(n\) là số kì tính lãi trong một năm và \(t\) là số kì gửi.

a) Tą có: \(P = 120,r = 6{\rm{\% }} = 0,06,n = 4,t = 20\). Thay vào công thức trên, ta được:

\(A = 120{\left( {1 + \frac{{0,06}}{4}} \right)^{20}} = 120.1,{015^{20}} \approx 161,623{\rm{\;\;}}\) (triệu đồng)

b) Ta có: \(P = 120,r = 6{\rm{\% }} = 0,06,n = 12,t = 60\). Thay vào công thức trên, ta được:

\(A = 120{\left( {1 + \frac{{0,06}}{{12}}} \right)^{60}} = 120.1,{005^{60}} \approx 161,862{\rm{\;}}\) (triệu đồng)

c) Ta sử dụng công thức lãi kép liên tục \(A = P{e^{rt}}\), ở đây \(r\) là lãi suất năm ( \(r\) cho dưới dạng số thập phân) và \(t\) là số năm gửi tiết kiệm.

Ta có: \(P = 120,r = 6{\rm{\% }} = 0,06,t = 5\) nên \(A = 120 \cdot {e^{0,06 - 5}} = 120 \cdot {e^{0,3}} \approx 161,983\) (triệu đồng)

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 6.28 trang 15 SBT Toán 15 Tập 2 Kết nối tri thức - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON