YOMEDIA
NONE

Bài tập 5.3 trang 78 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT

Bài tập 5.3 trang 78 SBT Toán 11 Tập 1 Kết nối tri thức

Cho \({u_n} = \frac{{1 + a + {a^2} + ... + {a^n}}}{{1 + b + {b^2} + ... + {b^n}}}\) với a, b là các số thực thỏa mãn \(\left| a \right| < 1,\left| b \right| < 1\). Tìm \(\mathop {\lim }\limits_{n \to + \infty } {u_n}\)?

ATNETWORK

Hướng dẫn giải chi tiết Bài 5.3

Ta có: \({u_n} = \frac{{1 + a + {a^2} + ... + {a^n}}}{{1 + b + {b^2} + ... + {b^n}}} = \frac{{\frac{{1 - {a^{n + 1}}}}{{1 - a}}}}{{\frac{{1 - {b^{n + 1}}}}{{1 - b}}}} = \frac{{1 - b}}{{1 - a}}.\frac{{1 - {a^{n + 1}}}}{{1 - {b^{n + 1}}}}\).

Do đó, \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = \frac{{1 - b}}{{1 - a}}\).

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 5.3 trang 78 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON