Thực hành 4 trang 19 SGK Toán 10 Chân trời sáng tạo tập 1
Trong mỗi cặp tập hợp sau đây, tập hợp nào là tập con của tập hợp còn lại? Chúng có bằng nhau không?
a) \(A = \{ - \sqrt 3 ;\sqrt 3 \} \) và \(B = \{ x \in \mathbb{R}|{x^2} - 3 = 0\} \)
b) C là tập hợp các tam giác đều và D là tập hợp các tam giác cân;
c) \(E = \{ x \in \mathbb{N}|x\) là ước của 12\(\} \) và \(F = \{ x \in \mathbb{N}|x\) là ước của 24\(\} .\)
Viết tất cả các tập con của tập hợp \(A = \{ a;b\} .\)
Hướng dẫn giải chi tiết
Hướng dẫn giải
\(A \subset B\) nếu mọi phần tử của A đều là phần tử của B.
\(A = B\) nếu \(A \subset B\) và \(B \subset A\)
Lời giải chi tiết
a) A là tập con của B vì:
\( - \sqrt 3 \in \mathbb{R}\) thỏa mãn \({\left( { - \sqrt 3 } \right)^2} - 3 = 0\), nên \( - \sqrt 3 \in B\)
\(\sqrt 3 \in \mathbb{R}\) thỏa mãn \({\left( {\sqrt 3 } \right)^2} - 3 = 0\), nên \(\sqrt 3 \in B\)
Lại có: \({x^2} - 3 = 0 \Leftrightarrow x = \pm \sqrt 3 \) nên \(B = \{ - \sqrt 3 ;\sqrt 3 \} \).
Vậy A = B.
b) C là tập hợp con của D vì: Mỗi tam giác đều đều là một tam giác cân.
\(C \ne D\) vì có nhiều tam giác cân không là tam giác đều, chẳng hạn: tam giác vuông cân.
c) E là tập con của F vì \(24\; \vdots \;12\) nên các ước nguyên dương của 12 đều là ước nguyên dương của 24.
\(E \ne F\) vì \(24 \in F\)nhưng \(24 \notin E\)
-- Mod Toán 10 HỌC247
-
Cho hai tập hợp \(A = \left\{ {x \in \mathbb{R}| - 2 \le x \le 5} \right\},B = \left\{ {x \in \mathbb{Z}|{x^2} - x - 6 = 0} \right\}\). Tập hợp \(A\backslash B\) bằng:
bởi Tuấn Huy 02/11/2022
A. \(\left( { - 2;3} \right)\)
B. \(\left( { - 2;3} \right) \cup \left( {3;5} \right]\)
C. \(\left( {3;5} \right]\)
D. \(\left[ { - 2;5} \right]\backslash \left\{ 3 \right\}\)
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Thực hành 3 trang 18 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Hoạt động khám phá trang 18 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Thực hành 5 trang 19 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Vận dụng trang 20 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Thực hành 6 trang 20 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 1 trang 20 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 2 trang 21 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 3 trang 21 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 4 trang 21 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 5 trang 21 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 1 trang 13 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 2 trang 13 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 3 trang 13 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 4 trang 13 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 5 trang 13 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 6 trang 13 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 7 trang 13 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 8 trang 13 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 9 trang 13 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 10 trang 13 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST