Câu hỏi trắc nghiệm (13 câu):
-
Câu 1: Mã câu hỏi: 148989
Giá trị của m để hai đường thẳng y = 2x + m và y = mx + 3 cùng đi qua một điểm có hoành độ bằng 2 là:
- A. m = 3
- B. m = 1
- C. m = 2
- D. m = -1
-
Câu 2: Mã câu hỏi: 150239
Rút gọn \(A = \sqrt {7 - 4\sqrt 3 } \) được kết quả là:
- A. \(A = 2 - \sqrt 3 \)
- B. \(A = 2 + \sqrt 3 \)
- C. \(A = \sqrt 3 - 2\)
- D. \(A = - 2 - \sqrt 3 \)
-
Câu 3: Mã câu hỏi: 150241
Trong các hàm số sau, hàm số nào nghịch biến khi x > 0.
- A. y = x
- B. \(y = \sqrt 2 .{x^2}\)
- C. y = 2x + 3
- D. \(y = \left( {\sqrt 3 - 2} \right){x^2}\)
-
Câu 4: Mã câu hỏi: 150242
Trong các phương trình sau, phương trình nào có hai nghiệm với mọi giá trị của m.
- A. \({x^2} - mx + 1 = 0\)
- B. \({x^2} + m - 1 = 0\)
- C. \(\left( {m - 1} \right){x^2} + mx + 1 = 0\)
- D. \({x^2} - 2mx - \sqrt 2 = 0\)
-
Câu 5: Mã câu hỏi: 150244
Giá trị của k để đường thẳng y = 2x + k cắt parabol y = x2 tại hai điểm phân biệt nằm ở hai bên trục tung là:
- A. \(k \ge 0\)
- B. \(k>0\)
- C. \(k=0\)
- D. \(k<0\)
-
Câu 6: Mã câu hỏi: 150246
Cho hai đường tròn (O;2cm); (O’;7cm) và OO’= 5cm. Hai đường tròn này ở vị trí:
- A. Tiếp xúc ngoài
- B. Ngoài nhau
- C. Cắt nhau
- D. Tiếp xúc trong
-
Câu 7: Mã câu hỏi: 150247
Cho tứ giác ABCD nội tiếp đường tròn (O;R) c\(\widehat {BCD} = {80^0}\)ó AB = R; AD = \(R\sqrt 2 \). Số đo \(\widehat {BCD}\) là:
- A. \(\widehat {BCD} = {80^0}\)
- B. \(\widehat {BCD} = {95^0}\)
- C. \(\widehat {BCD} = {85^0}\)
- D. \(\widehat {BCD} = {75^0}\)
-
Câu 8: Mã câu hỏi: 150248
Cho tam giác ABC vuông tại A, có AC = 3 cm; AB = 4 cm quay một vòng xung quanh cạnh cố định. Diện tích xung quanh của hình được tạo ra là:
- A. \(16,8\pi \) cm2
- B. \(15\pi \) cm2
- C. 16,8 cm2
- D. \(20\pi\) cm2
-
Câu 9: Mã câu hỏi: 150250
Cho biểu thức \(A = \frac{{2\sqrt x - 9}}{{x - 5\sqrt x + 6}} - \frac{{\sqrt x + 3}}{{\sqrt x - 2}} - \frac{{2\sqrt x + 1}}{{3 - \sqrt x }}\) với \(x \ge 0,x \ne 4,x \ne 9\)
a) Rút gọn biểu thức A
b) Tìm các giá trị nguyên của x để A nhận giá trị nguyên -
Câu 10: Mã câu hỏi: 150252
Cho parabol y = x2 (P) và đường thẳng y = 2mx - m + 2 (d).
a) Với m = - 1. Tìm toạ độ giao điểm của (d) và (P).
b) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt với mọi giá trị của m. Gọi (x1;y1); (x2;y2) là toạ độ giao điểm của (d) và (P). Tìm giá trị nhỏ nhất của biểu thức \(B = x_1^2 + x_2^2 - {y_1}.{y_2} - 1\) -
Câu 11: Mã câu hỏi: 150254
Giải hệ phương trình \(\left\{ \begin{array}{l}
{x^2} + {y^2} + 3xy = 5\\
(x + y)(x + y + 1) + xy = 7
\end{array} \right.\) -
Câu 12: Mã câu hỏi: 150255
Cho tam giác nhọn ABC nội tiếp đường tròn (O). Tiếp tuyến tại B và tại C của đường tròn cắt nhau tại D. Từ D kẻ đường thẳng song song với AB, đường thẳng này cắt đường tròn tại E và F, cắt AC tại I (E nằm trên cung nhỏ BC)
a) Chứng minh tứ giác BDCO nội tiếp được
b) Chứng minh DC2 = DE.DF
c) Chứng minh I là trung điểm của EF.
-
Câu 13: Mã câu hỏi: 150257
Giải phương trình: \(\left( {\sqrt {x + 3} - \sqrt {x + 1} } \right)\left( {{x^2} + \sqrt {{x^2} + 4x + 3} } \right) = 2x\)