YOMEDIA
NONE

Lăng kính có chiết suất n và góc chiết quang A. Một tia sáng đơn sắc được chiếu tới lăng kính sát mặt trước. Tia sáng khúc xạ vào lăng kính và ló ra ớ mặt kia với góc ló i’. Chứng minh hệ thức \(\dfrac{{{\rm{cosA + sini'}}}}{{\sin A}} = \sqrt {{n^2} - 1} \)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có ở I

    nsinr1 = sin900 -->  \(sinr_1 = \dfrac{1}{n}\)

    Mặt khác: \(r_1+r_2 = A => r_2 = A -r_1\)

    Ở J:

    \(\begin{array}{l}
    n\sin {r_2} = \sin i'\\
    \Rightarrow n\sin (A - {r_1}) = \sin i'\\
    \Rightarrow \sin A\cos {r_1} - {\mathop{\rm s}\nolimits} {\rm{in}}{{\rm{r}}_1}{\rm{cosA = }}\dfrac{{\sin i'}}{n}\\
    \Rightarrow \sin A\sqrt {1 - {{\sin }^2}_{{r_1}}} - {\mathop{\rm s}\nolimits} {\rm{in}}{{\rm{r}}_1}{\rm{cosA = }}\dfrac{{\sin i'}}{n}\\
    \Rightarrow \sin A\dfrac{{\sqrt {{n^2} - 1} }}{n} - \dfrac{{{\rm{cosA}}}}{n} = \dfrac{{\sin i'}}{n}
    \end{array}\)

    Do đó: \(\dfrac{{{\rm{cosA + sini'}}}}{{\sin A}} = \sqrt {{n^2} - 1} \)

      bởi Lan Anh 03/01/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON