YOMEDIA
NONE

Hai dây dẫn có hệ số nhiệt điện trở \({{\text{ }\!\!\alpha\!\!\text{ }}_{\text{1}}}\text{,}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{2}}}\); ở 00C có điện trở R01, R02. Tìm hệ số nhiệt điện trở chung của hai dây khi chúng mắc:

a) Nối tiếp.

b) Song song.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • -Điện trở của hai dây dẫn ở nhiệt độ t: R1 = R01[1+\){{\text{ }\!\!\alpha\!\!\text{ }}_{\text{1}}}\)(t1 – t01)]; R2 = R02[1+\({{\text{ }\!\!\alpha\!\!\text{ }}_{2}}\)(t2 – t02)].

    R1 = R01(1+\({{\text{ }\!\!\alpha\!\!\text{ }}_{\text{1}}}\)t); R2 = R02(1+\[{{\text{ }\!\!\alpha\!\!\text{ }}_{2}}\]t).

    với:      t01 = t02 = 0; \({{\text{ }\!\!\alpha\!\!\text{ }}_{\text{1}}}\)t, \){{\text{ }\!\!\alpha\!\!\text{ }}_{\text{2}}}\)t <<1.

    -Gọi R0 là điện trở chung của hai dây dẫn ở 00C; \(\text{ }\!\!\alpha\!\!\text{ }\) là hệ số nhiệt điện trở chung của hai dây dẫn. Điện trở chung của hai dây dẫn ở nhiệt độ t là:

                R = R0(1 + \(\text{ }\!\!\alpha\!\!\text{ }\)t)                                       (1)

    a)Khi mắc nối tiếp:

                R = R1 + R2 = R01(1+\({{\text{ }\!\!\alpha\!\!\text{ }}_{\text{1}}}\)t) + R02(1+\){{\text{ }\!\!\alpha\!\!\text{ }}_{\text{2}}}\)t)

    =>        R = (R01 + R02) + (R01\({{\text{ }\!\!\alpha\!\!\text{ }}_{\text{1}}}\) + R02\){{\text{ }\!\!\alpha\!\!\text{ }}_{\text{2}}}\))t

    =>        R = (R01 + R02)\(\left[ \text{1}+\frac{{{\text{R}}_{\text{01}}}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{1}}}+{{\text{R}}_{\text{02}}}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{2}}}}{{{\text{R}}_{\text{01}}}+{{\text{R}}_{\text{02}}}}\text{t} \right]\)              (2)

    -Từ (1) và (2) suy ra: \(\text{ }\!\!\alpha\!\!\text{ }=\frac{{{\text{R}}_{\text{01}}}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{1}}}+{{\text{R}}_{\text{02}}}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{2}}}}{{{\text{R}}_{\text{01}}}+{{\text{R}}_{\text{02}}}}\).

    b)Khi mắc song song:

                R = \(\frac{{{\text{R}}_{\text{1}}}{{\text{R}}_{\text{2}}}}{{{\text{R}}_{\text{1}}}+{{\text{R}}_{\text{2}}}}=\frac{{{\text{R}}_{\text{01}}}\text{(1}+{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{1}}}\text{t)}{{\text{R}}_{\text{02}}}\text{(1}+{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{2}}}\text{t)}}{{{\text{R}}_{\text{01}}}\text{(1}+{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{1}}}\text{t)}+{{\text{R}}_{\text{02}}}\text{(1}+{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{2}}}\text{t)}}\)

    =>        R = \(\frac{{{\text{R}}_{\text{01}}}{{\text{R}}_{\text{02}}}\text{(1}+{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{1}}}\text{t)(1}+{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{2}}}\text{t)}}{{{\text{R}}_{\text{01}}}+{{\text{R}}_{\text{02}}}+{{\text{R}}_{\text{01}}}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{1}}}\text{t}+{{\text{R}}_{\text{02}}}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{2}}}\text{t)}}\] = \[\frac{{{\text{R}}_{\text{01}}}{{\text{R}}_{\text{02}}}}{{{\text{R}}_{\text{01}}}+{{\text{R}}_{\text{02}}}}\text{.}\frac{\text{(1}+{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{1}}}\text{t)(1}+{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{2}}}\text{t)}}{\text{1}+\frac{{{\text{R}}_{\text{01}}}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{1}}}+{{\text{R}}_{\text{02}}}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{2}}}}{{{\text{R}}_{\text{01}}}+{{\text{R}}_{\text{02}}}}\text{t}}\)

    -Với \({{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{1}}}\text{,}{{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{2}}}<<\text{1}\), ta có các công thức gần đúng:

    \(\text{(1}+{{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{1}}}\text{)(1}+{{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{2}}}\text{)}\approx \text{1}+{{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{1}}}+{{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{2}}}\text{; }\frac{\text{1}+{{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{1}}}}{\text{1}+{{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{2}}}}\approx \text{1}+{{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{1}}}-{{\text{ }\!\!\varepsilon\!\!\text{ }}_{\text{2}}}\)

    nên      \(\text{(1}+{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{1}}}\text{t)(1}+{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{2}}}\text{t)}\approx \text{1}+\text{(}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{1}}}+{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{2}}}\text{)t}\)

    =>        \(\frac{\text{1}+\text{(}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{1}}}+{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{2}}}\text{)t}}{\text{1}+\frac{{{\text{R}}_{\text{01}}}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{1}}}+{{\text{R}}_{\text{02}}}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{2}}}}{{{\text{R}}_{\text{01}}}+{{\text{R}}_{\text{02}}}}\text{t}}\approx \text{1}+\text{(}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{1}}}+{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{2}}}-\frac{{{\text{R}}_{\text{01}}}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{1}}}+{{\text{R}}_{\text{02}}}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{2}}}}{{{\text{R}}_{\text{01}}}+{{\text{R}}_{\text{02}}}}\text{)t}\) \)\approx \) 1 + \)\frac{{{\text{R}}_{\text{01}}}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{2}}}+{{\text{R}}_{\text{02}}}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{1}}}}{{{\text{R}}_{\text{01}}}+{{\text{R}}_{\text{02}}}}\text{t}\)

    =>        R= \(\frac{{{\text{R}}_{\text{01}}}{{\text{R}}_{\text{02}}}}{{{\text{R}}_{\text{01}}}+{{\text{R}}_{\text{02}}}}\left[ \text{1}+\frac{{{\text{R}}_{\text{01}}}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{2}}}+{{\text{R}}_{\text{02}}}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{1}}}}{{{\text{R}}_{\text{01}}}+{{\text{R}}_{\text{02}}}}\text{t} \right]\)          (3)

    -Từ (1) và (3) suy ra: \(\text{ }\!\!\alpha\!\!\text{ }=\frac{{{\text{R}}_{\text{01}}}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{2}}}+{{\text{R}}_{\text{02}}}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{1}}}}{{{\text{R}}_{\text{01}}}+{{\text{R}}_{\text{02}}}}\).

    Vậy: Hệ số nhiệt điện trở chung của hai dây khi chúng mắc nối tiếp là \(\text{ }\!\!\alpha\!\!\text{ }=\frac{{{\text{R}}_{\text{01}}}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{1}}}+{{\text{R}}_{\text{02}}}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{2}}}}{{{\text{R}}_{\text{01}}}+{{\text{R}}_{\text{02}}}}\); khi chúng mắc song song là \)\text{ }\!\!\alpha\!\!\text{ }=\frac{{{\text{R}}_{\text{01}}}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{2}}}+{{\text{R}}_{\text{02}}}{{\text{ }\!\!\alpha\!\!\text{ }}_{\text{1}}}}{{{\text{R}}_{\text{01}}}+{{\text{R}}_{\text{02}}}}\).

      bởi Lan Anh 23/02/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON