YOMEDIA
NONE

Tính AD, DE biết tam giác ABC có AB=AC=6cm, BC =4 cm, các đường phân giác BD, CE

Cho tam giác abc có AB=AC=6cm ; BC =4 cm . Các đường phân giác BD,CE.Tính AD và DE.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • A B C D E O

    BD là phân giác của \(\widehat{ABC}\) trong ΔABC

    \(\Rightarrow\dfrac{AB}{BC}=\dfrac{AD}{DC}\)

    Hay \(\dfrac{6}{4}=\dfrac{AD}{DC}=\dfrac{3}{2}\)

    \(\Rightarrow\dfrac{AD}{DC+AD}=\dfrac{3}{2+3}\)

    \(\Rightarrow\dfrac{AD}{AC}=\dfrac{3}{5}\Rightarrow\dfrac{AD}{6}=\dfrac{3}{5}\)

    \(\Rightarrow AD=\dfrac{3.6}{5}=3,6\left(cm\right)\)

    Ta có :\(\widehat{ABC}=\widehat{ACB}\Rightarrow\dfrac{1}{2}\widehat{ABC}=\dfrac{1}{2}\widehat{ACB}\)

    \(\widehat{OBC}=\widehat{OCB}\)

    ⇒ΔOEB ∼ ΔODC ( gg)

    \(\widehat{OEB}=\widehat{ODC}\left(1\right)\)

    \(\widehat{OBC}=\widehat{OCB}\Rightarrow\Delta OBC\) cân tại O ⇒ OB = OC

    BD và CE là 2 đường phân giác ứng với hai cạnh bên của ΔABC

    ⇒ BD = CE

    ⇒ BD - OB = CE - OC

    ⇒ OE = OD

    ⇒ ΔOED cân tại O

    \(\Rightarrow\widehat{OED}=\widehat{ODE}\left(2\right)\)

    Từ (1)(2) ⇒ \(\widehat{AED}=\widehat{ADE}\)

    ⇒ ΔAED cân tại A

    \(\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}\left(3\right)\)

    ΔABC cân tại A

    \(\Rightarrow\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\left(4\right)\)

    Từ(3)(4) => \(\widehat{AED}=\widehat{ABC}\) ⇒ DE // BC \(\Rightarrow\dfrac{DE}{BC}=\dfrac{AD}{AC}\Rightarrow\dfrac{DE}{4}=\dfrac{3,6}{6}\Rightarrow DE=2,4\) cm

      bởi Chiến Thắng 01/06/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON