YOMEDIA
NONE

Chứng minh NOPQ là hình bình hành

cho tứ giác ABCD. gọi N, O, P, Q tương ứng là trung điểm của AB, BC, CD, và DA

a)chứng minh rằng NOPQ là hình bình hành

b) nếu có thêm AC vuông góc BD, chứng minh NOPQ là hình chữ nhật

Viết giả thuyết , kết luận hộ mình với :(((

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • GT

    - Tứ giác ABCD

    - N,O,P,Q lần lượt là trung điểm AB, BC, CD, DA.

    b) AC⊥BD

    KL

    a) C/m: NOPQ là hình bình hành

    b) C/m: NOPQ là hình chữ nhật

    a) *Xét △ABC, ta có:

    N là trung điểm AB (gt)

    O là trung điểm BC (gt)

    ⇒ ON là đường trung bình của △ABC.

    ⇒ ON // AC và ON = \(\dfrac{1}{2}\)AC

    *Xét △ADC, ta có:

    Q là trung điểm AD (gt)

    P là trung điểm CD (gt)

    ⇒ PQ là đường trung bình của △ADC

    ⇒ PQ // AC và PQ = \(\dfrac{1}{2}\)AC

    *Xét tứ giác NOPQ, ta có:

    ON // PQ ( ON // AC, PQ // AC)

    ON = PQ (ON = PQ = \(\dfrac{1}{2}\)AC)

    Vậy tứ giác NOPQ là hình bình hành.

    b) *Xét △ABD, ta có:

    Q là trung điểm AD (gt)

    N là trung điểm AB (gt)

    ⇒ QN // BD

    *Ta có:

    AC ⊥ BD (gt)

    QN // BD (cmt)

    ⇒ AC ⊥ QN

    Mà AC // ON (cmt)

    ⇒ ON ⊥ QN hay ^ONQ = 90o

    *Xét hình bình hành NOPQ, ta có:

    ^ONQ = 90o

    Vậy NOPQ là hình chữ nhật.

    Chúc bn hc tốt!

      bởi Nguyễn Dương 31/05/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON