YOMEDIA
NONE

Chứng minh n^5-5n^3+4n chia hết cho 120 với mọi số nguyên n

Chung minh rang: n5-5n3+4n chia hết cho 120 với mọi số nguyên n

Theo dõi Vi phạm
ATNETWORK

Trả lời (2)

  • Ta có:

    \(n^5-5n^3+4n=n\left(n^4-5n^2+4\right)\)

    \(=n\left(n^4-n^2-4n^2+4\right)\)

    \(=n\left[n^2\left(n^2-1\right)-4\left(n^2-1\right)\right]\)

    \(=n\left(n^2-1\right)\left(n^2-4\right)\)

    \(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)

    \(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

    \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích của 5 số tự nhiên liên tiếp nên chia hết cho 3 ; 5 và 8. Mà 3.5.8 = 120.

    => \(n^5-5n^3+4n⋮120\)

    Vậy ...

     

      bởi Phong nguyen Nguyen 17/10/2018
    Like (0) Báo cáo sai phạm
  • YOMEDIA

    Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

  • Phân tích đa thức thành nhân tử

    X*(x+1)*(x+2)*(x+3)+1

      bởi Lê Hải sơn 15/07/2020
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON