YOMEDIA
NONE

Chứng minh a^3 + b^3 + c^3 = 3abc biết a + b + c = 0

Chứng minh các bất đẳng thức :

  1. Cho a + b + c = 0 . Chứng minh rằng : a3 + b3 + c3 = 3abc.
  2. Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng :

\frac{a}{b+c} +\frac{b}{a+c} +\frac{c}{a+b} <2

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • 2) Vì a,b,c là độ dài 3 cạnh của tam giác

    => a,b,c > 0 và a < b+c ; b < a+ c ; c < a+ b

    Ta có: \(\dfrac{a}{b+c}< \dfrac{a+a}{a+b+c}\) = \(\dfrac{2a}{a+b+c}\) ( b + c > 0; a >0)

    \(\dfrac{b}{a+c}< \dfrac{b+b}{a+c+b}\) = \(\dfrac{2b}{a+b+c}\) ( a + c > 0; b > 0)

    \(\dfrac{c}{a+b}< \dfrac{c+c}{a+b+c}\) = \(\dfrac{2c}{a+b+c}\) ( a + b >0; c > 0)

    => \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\) < \(\dfrac{2a+2b+2c}{a+b+c}\) = \(\dfrac{2\left(a+b+c\right)}{a+b+c}\) = 2

    => đpcm

      bởi Nguyễn Thị Anh Thư 23/12/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON