YOMEDIA
NONE

Chứng minh a^3/(a^2+b^2)+b^3/(b^2+1)+1/(a^2+1)>=(a+b+1)/2

cho a và b là các sô thực dương. CMR

a3/(a2+b2)+b3/(b2+1)+1/(a2+1)>=(a+b+1)/2

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • nhận thấy nếu áp dụng bất đẳng thức như bình thường thì ta sẽ bị ngược dấu, do đó ta dùng kỹ thuật cauchy ngược dấu

    ta có:

    \(\dfrac{a^3}{a^2+b^2}\)=a-\(\dfrac{a.b^2}{a^2+b^2}\)\(\ge\)a-\(\dfrac{a.b^2}{2ab}\)=a-\(\dfrac{b}{2}\)

    \(\dfrac{b^3}{b^2+1}\)=b-\(\dfrac{b}{b^2+1}\)\(\ge\)b-\(\dfrac{b}{2b}\)=b-\(\dfrac{1}{2}\)

    \(\dfrac{1}{a^2+1}\)=1-\(\dfrac{a^2}{a^2 +1}\)\(\ge\)1-\(\dfrac{a^2}{2a}\)=1-\(\dfrac{a}{2}\)

    cộng từng vế của bất đẳng thức lại với nhau ta được:

    \(\dfrac{a^3}{a^2+b^2}\)+\(\dfrac{b^3}{b^2+1}\)+\(\dfrac{1}{a^2+1}\)\(\ge\)a-\(\dfrac{b}{2}\)+b-\(\dfrac{1}{2}\)+1-\(\dfrac{a}{2}\)=\(\dfrac{a+b+1}{2}\)

      bởi Nguyễn Hiền 23/12/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON